Theβ-LiGaO_(2)with an orthorhombic wurtzite-derived structure is a candidate ultrawide direct-bandgap semiconductor.In this work,using the non-adiabatic Allen-Heine-Cardona approach,we investigate the bandgap renorma...Theβ-LiGaO_(2)with an orthorhombic wurtzite-derived structure is a candidate ultrawide direct-bandgap semiconductor.In this work,using the non-adiabatic Allen-Heine-Cardona approach,we investigate the bandgap renormalization arising from electron-phonon coupling.We find a sizable zero-point motion correction of-0.362 eV to the gap atΓ,which is dominated by the contributions of long-wavelength longitudinal optical phonons.The bandgap ofβ-LiGaO_(2)decreases monotonically with increasing temperature.We investigate the optical spectra by comparing the model Bethe-Salpether equation method with the independent-particle approximation.The calculated optical spectra including electron-hole interactions exhibit strong excitonic effects,in qualitative agreement with the experiment.The contributing interband transitions and the binding energy for the excitonic states are analyzed.展开更多
基金Project support from the National Natural Science Foundation of China(Grant No.11604254)the Natural Science Foundation of Shaanxi ProvinceChina(Grant No.2019JQ-240)。
文摘Theβ-LiGaO_(2)with an orthorhombic wurtzite-derived structure is a candidate ultrawide direct-bandgap semiconductor.In this work,using the non-adiabatic Allen-Heine-Cardona approach,we investigate the bandgap renormalization arising from electron-phonon coupling.We find a sizable zero-point motion correction of-0.362 eV to the gap atΓ,which is dominated by the contributions of long-wavelength longitudinal optical phonons.The bandgap ofβ-LiGaO_(2)decreases monotonically with increasing temperature.We investigate the optical spectra by comparing the model Bethe-Salpether equation method with the independent-particle approximation.The calculated optical spectra including electron-hole interactions exhibit strong excitonic effects,in qualitative agreement with the experiment.The contributing interband transitions and the binding energy for the excitonic states are analyzed.