In this work, with the analysis on MO and electronic structure for a series of heteronuclear cluster with cubane type (Mo4S1 )xMn1(x=1.2. M = Cu, W, Ni, Sb, Mo, Sn, Cu2) we found that it is with the multiple center d-...In this work, with the analysis on MO and electronic structure for a series of heteronuclear cluster with cubane type (Mo4S1 )xMn1(x=1.2. M = Cu, W, Ni, Sb, Mo, Sn, Cu2) we found that it is with the multiple center d-pir orbitals that the ligand Mo3S44+ bonds to the M atom to form these class clusters. It is revealed that the charges transfer from the M atom to Mo atom of the ligand Mo3S44+ and its relationship with the MC (multiple center) d-pπ orbitals. Based on the charge transfer the electronic spectrum and the magnetic property of some cubane clusters have been discussed.展开更多
Engineering characterization of water has produced huge varieties of materials with special properties to meet human needs. Equilibrium properties of water-based liquids are well understood via localized atomic and mo...Engineering characterization of water has produced huge varieties of materials with special properties to meet human needs. Equilibrium properties of water-based liquids are well understood via localized atomic and molecular orbital theories. However, the mechanism of electrical conductivity of pure water has proven elusive. We show here it is trapping limited drift of positive and negative quasi-protons (or protons and proton-vacancies) on the extended water lattice, which is accounted for by the long-range correlation inherent in the Fermion (electrons and protons) and Boson (phonons) energy band theory of quasi-particles in solids, with vigorous adherence to equilibrium and nonequilibrium states.展开更多
文摘In this work, with the analysis on MO and electronic structure for a series of heteronuclear cluster with cubane type (Mo4S1 )xMn1(x=1.2. M = Cu, W, Ni, Sb, Mo, Sn, Cu2) we found that it is with the multiple center d-pir orbitals that the ligand Mo3S44+ bonds to the M atom to form these class clusters. It is revealed that the charges transfer from the M atom to Mo atom of the ligand Mo3S44+ and its relationship with the MC (multiple center) d-pπ orbitals. Based on the charge transfer the electronic spectrum and the magnetic property of some cubane clusters have been discussed.
文摘Engineering characterization of water has produced huge varieties of materials with special properties to meet human needs. Equilibrium properties of water-based liquids are well understood via localized atomic and molecular orbital theories. However, the mechanism of electrical conductivity of pure water has proven elusive. We show here it is trapping limited drift of positive and negative quasi-protons (or protons and proton-vacancies) on the extended water lattice, which is accounted for by the long-range correlation inherent in the Fermion (electrons and protons) and Boson (phonons) energy band theory of quasi-particles in solids, with vigorous adherence to equilibrium and nonequilibrium states.