The frequency characteristics of free oscillation magnetron(FOM) and injection-locked magnetron(ILM) are theoretically investigated.By using the equal power voltage obtained from the experiment data,expressions of...The frequency characteristics of free oscillation magnetron(FOM) and injection-locked magnetron(ILM) are theoretically investigated.By using the equal power voltage obtained from the experiment data,expressions of the frequency and radio frequency(RF) voltage of FOM and ILM,as well as the locking bandwidth,on the anode voltage and magnetic field are derived.With the increase of the anode voltage and the decrease of the magnetic field,the power and its growth rate increase,while the frequency increases and its growth rate decreases.The theoretical frequency and power of FOM agree with the particle-in-cell(PIC) simulation results.Besides,the theoretical trends of the power and frequency with the anode voltage and magnetic field are consistent with the experimental results,which verifies the accuracy of the theory.The theory provides a novel calculation method of frequency characteristics.It can approximately analyze the power and frequency of both FOM and ILM,which promotes the industrial applications of magnetron and microwave energy.展开更多
An ultra-wide and flat optical frequency comb(OFC) generation scheme using multiple continuous wave(CW) light sources based on electro-absorption modulator(EAM) and frequency modulator(FM) is proposed. In the scheme, ...An ultra-wide and flat optical frequency comb(OFC) generation scheme using multiple continuous wave(CW) light sources based on electro-absorption modulator(EAM) and frequency modulator(FM) is proposed. In the scheme, each CW light source is broadened and modulated by the first EAM and FM, respectively. The second EAM is introduced to flatten the ultra-wide OFC lines. By setting the wavelength spacing of light sources equal to the bandwidth of sub-OFC, an ultra-wide OFC can be obtained. Principle analysis and simulation for the scheme are performed. The results show that in the case of a single light source, a tunable and flat OFC is obtained. With the increase of light sources, the bandwidth of the generated ultra-wide OFC expands rapidly. In the case of 28 light sources, a 22 GHz ultra-wide OFC with bandwidth of 16.52 THz can be generated.展开更多
Nonclassical optical frequency combs find tremendous utility in quantum information and high-precision quantum measurement. The characteristics of a type-I synchronously pumped optical parametric oscillator with the T...Nonclassical optical frequency combs find tremendous utility in quantum information and high-precision quantum measurement. The characteristics of a type-I synchronously pumped optical parametric oscillator with the TEM_(01) transverse mode below threshold are investigated and a squeezing of 0.7 dB for an optical frequency comb squeezed light field with the TEM_(01) transverse mode is obtained under the pump power of 130 m W. This work has a promising application in three-dimensional space-time measurement.展开更多
基金Project supported by the National Basic Research Program of China(Grant No.2013CB328901)the National Natural Science Foundation of China(Grant No.11305177)
文摘The frequency characteristics of free oscillation magnetron(FOM) and injection-locked magnetron(ILM) are theoretically investigated.By using the equal power voltage obtained from the experiment data,expressions of the frequency and radio frequency(RF) voltage of FOM and ILM,as well as the locking bandwidth,on the anode voltage and magnetic field are derived.With the increase of the anode voltage and the decrease of the magnetic field,the power and its growth rate increase,while the frequency increases and its growth rate decreases.The theoretical frequency and power of FOM agree with the particle-in-cell(PIC) simulation results.Besides,the theoretical trends of the power and frequency with the anode voltage and magnetic field are consistent with the experimental results,which verifies the accuracy of the theory.The theory provides a novel calculation method of frequency characteristics.It can approximately analyze the power and frequency of both FOM and ILM,which promotes the industrial applications of magnetron and microwave energy.
基金supported by the Specialized Research Fund for the National Natural Science Foundation of China(Nos.61275067 and 61302026)the Provincial Natural Foundation of Jiangsu(Nos.BK2012830 and BK2012432)
文摘An ultra-wide and flat optical frequency comb(OFC) generation scheme using multiple continuous wave(CW) light sources based on electro-absorption modulator(EAM) and frequency modulator(FM) is proposed. In the scheme, each CW light source is broadened and modulated by the first EAM and FM, respectively. The second EAM is introduced to flatten the ultra-wide OFC lines. By setting the wavelength spacing of light sources equal to the bandwidth of sub-OFC, an ultra-wide OFC can be obtained. Principle analysis and simulation for the scheme are performed. The results show that in the case of a single light source, a tunable and flat OFC is obtained. With the increase of light sources, the bandwidth of the generated ultra-wide OFC expands rapidly. In the case of 28 light sources, a 22 GHz ultra-wide OFC with bandwidth of 16.52 THz can be generated.
基金supported by the National Natural Science Foundation of China(Nos.91536222,11274212,and 61405108)the National Basic Research Program of China(No.2010CB923102)+1 种基金the NSFC Project for Excellent Research Team(No.61121064)the University Science and Technology Innovation Project in the Shanxi Province(No.2015103)
文摘Nonclassical optical frequency combs find tremendous utility in quantum information and high-precision quantum measurement. The characteristics of a type-I synchronously pumped optical parametric oscillator with the TEM_(01) transverse mode below threshold are investigated and a squeezing of 0.7 dB for an optical frequency comb squeezed light field with the TEM_(01) transverse mode is obtained under the pump power of 130 m W. This work has a promising application in three-dimensional space-time measurement.