Background During approximately 10,000 years of domestication and selection,a large number of structural variations(SVs)have emerged in the genome of pig breeds,profoundly influencing their phenotypes and the ability ...Background During approximately 10,000 years of domestication and selection,a large number of structural variations(SVs)have emerged in the genome of pig breeds,profoundly influencing their phenotypes and the ability to adapt to the local environment.SVs(≥50 bp)are widely distributed in the genome,mainly in the form of insertion(INS),mobile element insertion(MEI),deletion(DEL),duplication(DUP),inversion(INV),and translocation(TRA).While studies have investigated the SVs in pig genomes,genome-wide association studies(GWAS)-based on SVs have been rarely conducted.Results Here,we obtained a high-quality SV map containing 123,151 SVs from 15 Large White and 15 Min pigs through integrating the power of several SV tools,with 53.95%of the SVs being reported for the first time.These high-quality SVs were used to recover the population genetic structure,confirming the accuracy of genotyping.Potential functional SV loci were then identified based on positional effects and breed stratification.Finally,GWAS were performed for 36 traits by genotyping the screened potential causal loci in the F2 population according to their corresponding genomic positions.We identified a large number of loci involved in 8 carcass traits and 6 skeletal traits on chromosome 7,with FKBP5 containing the most significant SV locus for almost all traits.In addition,we found several significant loci in intramuscular fat,abdominal circumference,heart weight,and liver weight,etc.Conclusions We constructed a high-quality SV map using high-coverage sequencing data and then analyzed them by performing GWAS for 25 carcass traits,7 skeletal traits,and 4 meat quality traits to determine that SVs may affect body size between European and Chinese pig breeds.展开更多
Spot weld models are widely used in finite element analysis(FEA) of automotive body in white(BIW) to predict static,dynamic,durability and other characteristics of automotive BIW.However,few researches are done on...Spot weld models are widely used in finite element analysis(FEA) of automotive body in white(BIW) to predict static,dynamic,durability and other characteristics of automotive BIW.However,few researches are done on evaluation of the validity of these spot weld models in structural dynamic analysis of BIW.To evaluate the validity and accuracy of spot weld models in structural dynamic analysis of BIW,two object functions,error function and deviation function,are introduced innovatively.Modal analysis of Two-panel and Double-hat structures,which are the dominated structures in BIW,is conducted,and the values of these two object functions are obtained.Based on the values of object functions,the validity of these spot weld models are evaluated.It is found that the area contact method(ACM2) and weld element connection(CWELD) can give more precise prediction in modal analysis of these two classical structures,thus are more applicable to structural dynamic analysis of automotive BIW.Modal analysis of a classical BIW is performed,which further confirms this evaluation.The error function and deviation function proposed in this research can give guidance on the adaptability of spot weld models in structural dynamic analysis of BIW.And this evaluation method can also be adopted in evaluation of other finite element models in static,dynamic and other kinds of analysis for automotive structures.展开更多
A very fast simulated annealing(VFSA) global optimization is used to interpret residual gravity anomaly.Since,VFSA optimization yields a large number of best-fitted models in a vast model space;the nature of uncerta...A very fast simulated annealing(VFSA) global optimization is used to interpret residual gravity anomaly.Since,VFSA optimization yields a large number of best-fitted models in a vast model space;the nature of uncertainty in the interpretation is also examined simultaneously in the present study.The results of VFSA optimization reveal that various parameters show a number of equivalent solutions when shape of the target body is not known and shape factor 'q' is also optimized together with other model parameters.The study reveals that amplitude coefficient k is strongly dependent on shape factor.This shows that there is a multi-model type uncertainty between these two model parameters derived from the analysis of cross-plots.However,the appraised values of shape factor from various VFSA runs clearly indicate whether the subsurface structure is sphere,horizontal or vertical cylinder type structure.Accordingly,the exact shape factor(1.5 for sphere,1.0 for horizontal cylinder and 0.5 for vertical cylinder)is fixed and optimization process is repeated.After fixing the shape factor,analysis of uncertainty and cross-plots shows a well-defined uni-model characteristic.The mean model computed after fixing the shape factor gives the utmost consistent results.Inversion of noise-free and noisy synthetic data as well as field data demonstrates the efficacy of the approach.展开更多
Rolling stock manufacturers are finding structural solutions to reduce power required by the vehicles,and the lightweight design of the car body represents a possible solution.Optimization processes and innovative mat...Rolling stock manufacturers are finding structural solutions to reduce power required by the vehicles,and the lightweight design of the car body represents a possible solution.Optimization processes and innovative materials can be combined in order to achieve this goal.In this framework,we propose the redesign and optimization process of the car body roof for a light rail vehicle,introducing a sandwich structure.Bonded joint was used as a fastening system.The project was carried out on a single car of a modern tram platform.This preliminary numerical work was developed in two main steps:redesign of the car body structure and optimization of the innovated system.Objective of the process was the mass reduction of the whole metallic structure,while the constraint condition was imposed on the first frequency of vibration of the system.The effect of introducing a sandwich panel within the roof assembly was evaluated,focusing on the mechanical and dynamic performances of the whole car body.A mass saving of 63%on the optimized components was achieved,corresponding to a 7.6%if compared to the complete car body shell.In addition,a positive increasing of 17.7%on the first frequency of vibration was observed.Encouraging results have been achieved in terms of weight reduction and mechanical behaviour of the innovated car body.展开更多
In the second member of the Upper Triassic Xujiahe Formation(T_(3)x_(2))in the Xinchang area,western Sichuan Basin,only a low percent of reserves has been recovered,and the geological model of gas reservoir sweet spot...In the second member of the Upper Triassic Xujiahe Formation(T_(3)x_(2))in the Xinchang area,western Sichuan Basin,only a low percent of reserves has been recovered,and the geological model of gas reservoir sweet spot remains unclear.Based on a large number of core,field outcrop,test and logging-seismic data,the T_(3)x_(2) gas reservoir in the Xinchang area is examined.The concept of fault-fold-fracture body(FFFB)is proposed,and its types are recognized.The main factors controlling fracture development are identified,and the geological models of FFFB are established.FFFB refers to faults,folds and associated fractures reservoirs.According to the characteristics and genesis,FFFBs can be divided into three types:fault-fracture body,fold-fracture body,and fault-fold body.In the hanging wall of the fault,the closer to the fault,the more developed the effective fractures;the greater the fold amplitude and the closer to the fold hinge plane,the more developed the effective fractures.Two types of geological models of FFFB are established:fault-fold fracture,and matrix storage and permeability.The former can be divided into two subtypes:network fracture,and single structural fracture,and the later can be divided into three subtypes:bedding fracture,low permeability pore,and extremely low permeability pore.The process for evaluating favorable FFFB zones was formed to define favorable development targets and support the well deployment for purpose of high production.The study results provide a reference for the exploration and development of deep tight sandstone oil and gas reservoirs in China.展开更多
Structural measurements are indicators of animal performance,productivity and carcass characteristics.This study was conducted with the objectives of assessing structural measurements,developing body weight prediction...Structural measurements are indicators of animal performance,productivity and carcass characteristics.This study was conducted with the objectives of assessing structural measurements,developing body weight prediction and structural indices for cows of Arsi breed.The cows were purchased from highland and lowland agro-ecologies of Arsi and East Shoa zones of Oromia regional state,Ethiopia and kept in Adami Tulu Agricultural Research Center(ATARC)for the breed development purpose.Totally 222 cows were included in the structural traits measurement.Thirty four young heifers were also considered in the study.Twenty two structural traits were considered during observational survey.The structural index was calculated from the phenotypically correlated linear measurements.Structural traits were analyzed by T-test of SPSS version twenty four.The observed average values of height at wither,chest depth,heart girth,body length,pelvic width,cannon bone circumferences of the cows were 107,55.62,141.06,117.82,31.41 and 13.58cm,respectively.Heart girth(0.82),flank girth(0.73),hook circumferences(0.67),chest depth(0.65)and height at rump(0.64)were highly correlated(P<0.01)to body weight of the cows.Regression analysis indicated that hearth girth had the highest coefficient of determination for body weight of the cows and heifers.Accordingly,the simple linear equations were developed to predict the body weight of cows and heifers.Body weight of Arsi cow(y)=-221.005+3.1(heart girth)and Body weight of Arsi heifer(y)=-188.452+2.75(heart girth).Based on this,the measuring chart tape can be developed to estimate the body weight of Arsi cows and heifers at field condition where there is no access to weighing scales.展开更多
Distributed Acoustic Sensing(DAS) is an emerging technique for ultra-dense seismic observation, which provides a new method for high-resolution sub-surface seismic imaging. Recently a large number of linear DAS arrays...Distributed Acoustic Sensing(DAS) is an emerging technique for ultra-dense seismic observation, which provides a new method for high-resolution sub-surface seismic imaging. Recently a large number of linear DAS arrays have been used for two-dimensional S-wave near-surface imaging in urban areas. In order to explore the feasibility of three-dimensional(3D) structure imaging using a DAS array, we carried out an active source experiment at the Beijing National Earth Observatory. We deployed a 1 km optical cable in a rectangular shape, and the optical cable was recast into 250 sensors with a channel spacing of 4 m. The DAS array clearly recorded the P, S and surface waves generated by a hammer source. The first-arrival P wave travel times were first picked with a ShortTerm Average/Long-Term Average(STA/LTA) method and further manually checked. The P-wave signals recorded by the DAS are consistent with those recorded by the horizontal components of short-period seismometers. At shorter source-receiver distances, the picked P-wave arrivals from the DAS recording are consistent with vertical component recordings of seismometers, but they clearly lag behind the latter at greater distances.This is likely due to a combination of the signal-to-noise ratio and the polarization of the incoming wave. Then,we used the Tomo DD software to invert the 3D P-wave velocity structure for the uppermost 50 m with a resolution of 10 m. The inverted P-wave velocity structures agree well with the S-wave velocity structure previously obtained through ambient noise tomography. Our study indicates the feasibility of 3D near-surface imaging with the active source and DAS array. However, the inverted absolute velocity values at large depths may be biased due to potential time shifts between the DAS recording and seismometer at large source-receiver distances.展开更多
Car body design in view of structural performance and lightweighting is a challenging task due to all the performance targets that must be satisfied such as vehicle safety and ride quality.In this paper,material repla...Car body design in view of structural performance and lightweighting is a challenging task due to all the performance targets that must be satisfied such as vehicle safety and ride quality.In this paper,material replacement along with multidisciplinary design optimization strategy is proposed to develop a lightweight car body structure that satisfies the crash and vibration criteria while minimizing weight.Through finite element simulations,full frontal,offset frontal,and side crashes of a full car model are evaluated for peak acceleration,intrusion distance,and the internal energy absorbed by the structural parts.In addition,the first three fundamental natural frequencies are combined with the crash metrics to form the design constraints.The wall thicknesses of twenty-two parts are considered as the design variables.Latin Hypercube Sampling is used to sample the design space,while Radial Basis Function methodology is used to develop surrogate models for the selected crash responses at multiple sites as well as the first three fundamental natural frequencies.A nonlinear surrogate-based optimization problem is formulated for mass minimization under crash and vibration constraints.Using Sequential Quadratic Programming,the design optimization problem is solved with the results verified by finite element simulations.The performance of the optimum design with magnesium parts shows significant weight reduction and better performance compared to the baseline design.展开更多
A backfilling body-coal pillar-backfilling body(BPB)structure formed by pillar-side cemented paste backfilling can bear overburden stress and ensure safe mining.However,the failure response of BPB composite samples mu...A backfilling body-coal pillar-backfilling body(BPB)structure formed by pillar-side cemented paste backfilling can bear overburden stress and ensure safe mining.However,the failure response of BPB composite samples must be investigated.This paper examines the deformation characteristics and damage evolution of six types of BPB composite samples using a digital speckle correlation method under uniaxial compression conditions.A new damage evolution equation was established on the basis of the input strain energy and dissipated strain energy at the peak stress.The prevention and control mechanisms of the backfilling body on the coal pillar instability were discussed.The results show that the deformation localization and macroscopic cracks of the BPB composite samples first appeared at the coal-backfilling interface,and then expanded to the backfilling elements,ultimately appearing in the coal elements.The elastic strain energy in the BPB composite samples reached a maximum at the peak stress,whereas the dissipated energy continued to accumulate and increase.The damage evolution curve and equation agree well with the test results,providing further understanding of instability prevention and the control mechanisms of the BPB composite samples.The restraining effect on the coal pillar was gradually reduced with decreasing backfilling body element's volume ratio,and the BPB composite structure became more vulnerable to failure.This research is expected to guide the design,stability monitoring,instability prevention,and control of BPB structures in pillar-side cemented paste backfilling mining.展开更多
The issue of climatism is a matter of concern today, given the growth of technology and the subject of globalization, which is defined and explained in many respects. The rapid advancement of technology makes communic...The issue of climatism is a matter of concern today, given the growth of technology and the subject of globalization, which is defined and explained in many respects. The rapid advancement of technology makes communication and navigation readily available. This factor causes the challenge for human societies to discover more recent developments that in turn raise the issues of how can the climatism be compatible with the creation of an architectural work, taking into account that the countries’ conventional boundaries lose their importance. And, the factors affect climatism, in other words, the way that climatism, human societies with diverse cultures, and the surrounding environment interact with each other, is raised. And, in general, the way that an architecture work to interact with its environment is discussed. In this sense, the traditional and indigenous architecture, and the fluidity of the region in the architectural framework also address the characteristics of the physical and architectural features of each region from the architectural arena, introducing effective approaches to architecture and urban planning (objective and tactical approaches), using the rational-logical approach to regional review. Then, the discussion of regionalism and regional influences in the physical fabric of each traditional architectural structure’s region is presented, with the special look of traditional architecture that is expressed in consistency between the building and the nature, and to explain the arguments to the examples and characteristics.展开更多
A physical value mapping (PVM) algorithm based on finite element mesh from the stamped part in stamping process to the product is presented, In order to improve the efficiency of the PVM algorithm, a search way from...A physical value mapping (PVM) algorithm based on finite element mesh from the stamped part in stamping process to the product is presented, In order to improve the efficiency of the PVM algorithm, a search way from the mesh of the product to the mesh of the stamped part will be adopted. At the same time, the search process is divided into two steps: entire search (ES) and local search (LS), which improve the searching efficiency. The searching area is enlarged to avoid missing projection elements in ES process. An arc-length method is introduced in LS process. The validity is confirmed by the results of the complex industry-forming product.展开更多
Front bumper, crash box and side rail are key body structural parts in front crash. Deformation space is affected by compartment packaging. The improvement suggestions are proposed to solve the problems existed in the...Front bumper, crash box and side rail are key body structural parts in front crash. Deformation space is affected by compartment packaging. The improvement suggestions are proposed to solve the problems existed in the current vehicle struc- ture and compartment packaging based on the areas that influence performance of automobile offset deformable barrier impact, such as the side rail, mounting, storage battery packaging,etc. It is proved that dO % offset crash simulation result of one certain car is well-correlated with the physical test. Optimization cases meet the crash performance requirements. The objec- tive of the analysis is to guide structural design and improves a car' s crash safety performance.展开更多
The nonlinear radiated waves generated by a structure in forced motion, are simulated numerically based on the potential theory. A fully nonlinear numerical model is developed by using a higher-order boundary element ...The nonlinear radiated waves generated by a structure in forced motion, are simulated numerically based on the potential theory. A fully nonlinear numerical model is developed by using a higher-order boundary element method (HOBEM). In this model, the instantaneous body position and the transient free surface are updated at each time step. A Lagrangian technique is employed as the time marching scheme on the free surface. The mesh regridding and interpolation methods are adopted to deal with the possible numerical instability. Several auxiliary functions are proposed to calculate the wave loads indirectly, instead of directly predicting the temporal derivative of the velocity potential. Numerical experiments are carried out to simulate the heave motions of a submerged sphere in infinite water depth, the heave and pitch motions of a truncated flared cylinder in finite depth. The results are verified against the published numerical results to ensure the effectiveness of the proposed model. Moreover, a series of higher harmonic waves and force components are obtained by the Fourier transformation to investigate the nonlinear effect of oscillation frequency. The difference among fully nonlinear, body-nonlinear and linear results is analyzed. It is found that the nonlinearity due to free surface and body surface has significant influences on the numerical results of the radiated waves and forces.展开更多
基金supported by the National Key R&D Program of China(2021YFD1301101)National Swine Industry Technology System(CARS-35)Agricultural Science and Technology Innovation Program(ASTIP-IAS02)。
文摘Background During approximately 10,000 years of domestication and selection,a large number of structural variations(SVs)have emerged in the genome of pig breeds,profoundly influencing their phenotypes and the ability to adapt to the local environment.SVs(≥50 bp)are widely distributed in the genome,mainly in the form of insertion(INS),mobile element insertion(MEI),deletion(DEL),duplication(DUP),inversion(INV),and translocation(TRA).While studies have investigated the SVs in pig genomes,genome-wide association studies(GWAS)-based on SVs have been rarely conducted.Results Here,we obtained a high-quality SV map containing 123,151 SVs from 15 Large White and 15 Min pigs through integrating the power of several SV tools,with 53.95%of the SVs being reported for the first time.These high-quality SVs were used to recover the population genetic structure,confirming the accuracy of genotyping.Potential functional SV loci were then identified based on positional effects and breed stratification.Finally,GWAS were performed for 36 traits by genotyping the screened potential causal loci in the F2 population according to their corresponding genomic positions.We identified a large number of loci involved in 8 carcass traits and 6 skeletal traits on chromosome 7,with FKBP5 containing the most significant SV locus for almost all traits.In addition,we found several significant loci in intramuscular fat,abdominal circumference,heart weight,and liver weight,etc.Conclusions We constructed a high-quality SV map using high-coverage sequencing data and then analyzed them by performing GWAS for 25 carcass traits,7 skeletal traits,and 4 meat quality traits to determine that SVs may affect body size between European and Chinese pig breeds.
基金supported by National Natural Science Foundation of China(Grant No.10772060)Heilongjiang Provincial Natural Science Foundation with Excellent Young Investigators of China(GrantNo.JC2006-13)
文摘Spot weld models are widely used in finite element analysis(FEA) of automotive body in white(BIW) to predict static,dynamic,durability and other characteristics of automotive BIW.However,few researches are done on evaluation of the validity of these spot weld models in structural dynamic analysis of BIW.To evaluate the validity and accuracy of spot weld models in structural dynamic analysis of BIW,two object functions,error function and deviation function,are introduced innovatively.Modal analysis of Two-panel and Double-hat structures,which are the dominated structures in BIW,is conducted,and the values of these two object functions are obtained.Based on the values of object functions,the validity of these spot weld models are evaluated.It is found that the area contact method(ACM2) and weld element connection(CWELD) can give more precise prediction in modal analysis of these two classical structures,thus are more applicable to structural dynamic analysis of automotive BIW.Modal analysis of a classical BIW is performed,which further confirms this evaluation.The error function and deviation function proposed in this research can give guidance on the adaptability of spot weld models in structural dynamic analysis of BIW.And this evaluation method can also be adopted in evaluation of other finite element models in static,dynamic and other kinds of analysis for automotive structures.
文摘A very fast simulated annealing(VFSA) global optimization is used to interpret residual gravity anomaly.Since,VFSA optimization yields a large number of best-fitted models in a vast model space;the nature of uncertainty in the interpretation is also examined simultaneously in the present study.The results of VFSA optimization reveal that various parameters show a number of equivalent solutions when shape of the target body is not known and shape factor 'q' is also optimized together with other model parameters.The study reveals that amplitude coefficient k is strongly dependent on shape factor.This shows that there is a multi-model type uncertainty between these two model parameters derived from the analysis of cross-plots.However,the appraised values of shape factor from various VFSA runs clearly indicate whether the subsurface structure is sphere,horizontal or vertical cylinder type structure.Accordingly,the exact shape factor(1.5 for sphere,1.0 for horizontal cylinder and 0.5 for vertical cylinder)is fixed and optimization process is repeated.After fixing the shape factor,analysis of uncertainty and cross-plots shows a well-defined uni-model characteristic.The mean model computed after fixing the shape factor gives the utmost consistent results.Inversion of noise-free and noisy synthetic data as well as field data demonstrates the efficacy of the approach.
文摘Rolling stock manufacturers are finding structural solutions to reduce power required by the vehicles,and the lightweight design of the car body represents a possible solution.Optimization processes and innovative materials can be combined in order to achieve this goal.In this framework,we propose the redesign and optimization process of the car body roof for a light rail vehicle,introducing a sandwich structure.Bonded joint was used as a fastening system.The project was carried out on a single car of a modern tram platform.This preliminary numerical work was developed in two main steps:redesign of the car body structure and optimization of the innovated system.Objective of the process was the mass reduction of the whole metallic structure,while the constraint condition was imposed on the first frequency of vibration of the system.The effect of introducing a sandwich panel within the roof assembly was evaluated,focusing on the mechanical and dynamic performances of the whole car body.A mass saving of 63%on the optimized components was achieved,corresponding to a 7.6%if compared to the complete car body shell.In addition,a positive increasing of 17.7%on the first frequency of vibration was observed.Encouraging results have been achieved in terms of weight reduction and mechanical behaviour of the innovated car body.
基金Supported by the Sinopec Science and Technology Project(P21040-1).
文摘In the second member of the Upper Triassic Xujiahe Formation(T_(3)x_(2))in the Xinchang area,western Sichuan Basin,only a low percent of reserves has been recovered,and the geological model of gas reservoir sweet spot remains unclear.Based on a large number of core,field outcrop,test and logging-seismic data,the T_(3)x_(2) gas reservoir in the Xinchang area is examined.The concept of fault-fold-fracture body(FFFB)is proposed,and its types are recognized.The main factors controlling fracture development are identified,and the geological models of FFFB are established.FFFB refers to faults,folds and associated fractures reservoirs.According to the characteristics and genesis,FFFBs can be divided into three types:fault-fracture body,fold-fracture body,and fault-fold body.In the hanging wall of the fault,the closer to the fault,the more developed the effective fractures;the greater the fold amplitude and the closer to the fold hinge plane,the more developed the effective fractures.Two types of geological models of FFFB are established:fault-fold fracture,and matrix storage and permeability.The former can be divided into two subtypes:network fracture,and single structural fracture,and the later can be divided into three subtypes:bedding fracture,low permeability pore,and extremely low permeability pore.The process for evaluating favorable FFFB zones was formed to define favorable development targets and support the well deployment for purpose of high production.The study results provide a reference for the exploration and development of deep tight sandstone oil and gas reservoirs in China.
文摘Structural measurements are indicators of animal performance,productivity and carcass characteristics.This study was conducted with the objectives of assessing structural measurements,developing body weight prediction and structural indices for cows of Arsi breed.The cows were purchased from highland and lowland agro-ecologies of Arsi and East Shoa zones of Oromia regional state,Ethiopia and kept in Adami Tulu Agricultural Research Center(ATARC)for the breed development purpose.Totally 222 cows were included in the structural traits measurement.Thirty four young heifers were also considered in the study.Twenty two structural traits were considered during observational survey.The structural index was calculated from the phenotypically correlated linear measurements.Structural traits were analyzed by T-test of SPSS version twenty four.The observed average values of height at wither,chest depth,heart girth,body length,pelvic width,cannon bone circumferences of the cows were 107,55.62,141.06,117.82,31.41 and 13.58cm,respectively.Heart girth(0.82),flank girth(0.73),hook circumferences(0.67),chest depth(0.65)and height at rump(0.64)were highly correlated(P<0.01)to body weight of the cows.Regression analysis indicated that hearth girth had the highest coefficient of determination for body weight of the cows and heifers.Accordingly,the simple linear equations were developed to predict the body weight of cows and heifers.Body weight of Arsi cow(y)=-221.005+3.1(heart girth)and Body weight of Arsi heifer(y)=-188.452+2.75(heart girth).Based on this,the measuring chart tape can be developed to estimate the body weight of Arsi cows and heifers at field condition where there is no access to weighing scales.
基金supported by the National Key R&D Program of China(2022YFC3102202)the Chinese Academy of Sciences (CAS) Project for Young Scientists in Basic Research (YSBR-020)。
文摘Distributed Acoustic Sensing(DAS) is an emerging technique for ultra-dense seismic observation, which provides a new method for high-resolution sub-surface seismic imaging. Recently a large number of linear DAS arrays have been used for two-dimensional S-wave near-surface imaging in urban areas. In order to explore the feasibility of three-dimensional(3D) structure imaging using a DAS array, we carried out an active source experiment at the Beijing National Earth Observatory. We deployed a 1 km optical cable in a rectangular shape, and the optical cable was recast into 250 sensors with a channel spacing of 4 m. The DAS array clearly recorded the P, S and surface waves generated by a hammer source. The first-arrival P wave travel times were first picked with a ShortTerm Average/Long-Term Average(STA/LTA) method and further manually checked. The P-wave signals recorded by the DAS are consistent with those recorded by the horizontal components of short-period seismometers. At shorter source-receiver distances, the picked P-wave arrivals from the DAS recording are consistent with vertical component recordings of seismometers, but they clearly lag behind the latter at greater distances.This is likely due to a combination of the signal-to-noise ratio and the polarization of the incoming wave. Then,we used the Tomo DD software to invert the 3D P-wave velocity structure for the uppermost 50 m with a resolution of 10 m. The inverted P-wave velocity structures agree well with the S-wave velocity structure previously obtained through ambient noise tomography. Our study indicates the feasibility of 3D near-surface imaging with the active source and DAS array. However, the inverted absolute velocity values at large depths may be biased due to potential time shifts between the DAS recording and seismometer at large source-receiver distances.
基金This material is based on the work supported by the U.S.Department of Energy under Award number DE-EE0002323.
文摘Car body design in view of structural performance and lightweighting is a challenging task due to all the performance targets that must be satisfied such as vehicle safety and ride quality.In this paper,material replacement along with multidisciplinary design optimization strategy is proposed to develop a lightweight car body structure that satisfies the crash and vibration criteria while minimizing weight.Through finite element simulations,full frontal,offset frontal,and side crashes of a full car model are evaluated for peak acceleration,intrusion distance,and the internal energy absorbed by the structural parts.In addition,the first three fundamental natural frequencies are combined with the crash metrics to form the design constraints.The wall thicknesses of twenty-two parts are considered as the design variables.Latin Hypercube Sampling is used to sample the design space,while Radial Basis Function methodology is used to develop surrogate models for the selected crash responses at multiple sites as well as the first three fundamental natural frequencies.A nonlinear surrogate-based optimization problem is formulated for mass minimization under crash and vibration constraints.Using Sequential Quadratic Programming,the design optimization problem is solved with the results verified by finite element simulations.The performance of the optimum design with magnesium parts shows significant weight reduction and better performance compared to the baseline design.
基金supported by the Shanxi Science and Technology Major Project (No.20201102004)the Distinguished Youth Funds of National Natural Science Foundation of China (No.51925402)+2 种基金the National Natural Science Foundation of China (Nos.52174125,52004171,and 51904203)the Outstanding Youth Cultivation Project in Shanxi Province,China (No.202103021222008)the Key Science and Technology Innovation Team of“1331”Project in Shanxi Province,China,and the Open Fund Project of Key Laboratory of Mining Disaster Prevention and Control (No.MDPC202004)。
文摘A backfilling body-coal pillar-backfilling body(BPB)structure formed by pillar-side cemented paste backfilling can bear overburden stress and ensure safe mining.However,the failure response of BPB composite samples must be investigated.This paper examines the deformation characteristics and damage evolution of six types of BPB composite samples using a digital speckle correlation method under uniaxial compression conditions.A new damage evolution equation was established on the basis of the input strain energy and dissipated strain energy at the peak stress.The prevention and control mechanisms of the backfilling body on the coal pillar instability were discussed.The results show that the deformation localization and macroscopic cracks of the BPB composite samples first appeared at the coal-backfilling interface,and then expanded to the backfilling elements,ultimately appearing in the coal elements.The elastic strain energy in the BPB composite samples reached a maximum at the peak stress,whereas the dissipated energy continued to accumulate and increase.The damage evolution curve and equation agree well with the test results,providing further understanding of instability prevention and the control mechanisms of the BPB composite samples.The restraining effect on the coal pillar was gradually reduced with decreasing backfilling body element's volume ratio,and the BPB composite structure became more vulnerable to failure.This research is expected to guide the design,stability monitoring,instability prevention,and control of BPB structures in pillar-side cemented paste backfilling mining.
文摘The issue of climatism is a matter of concern today, given the growth of technology and the subject of globalization, which is defined and explained in many respects. The rapid advancement of technology makes communication and navigation readily available. This factor causes the challenge for human societies to discover more recent developments that in turn raise the issues of how can the climatism be compatible with the creation of an architectural work, taking into account that the countries’ conventional boundaries lose their importance. And, the factors affect climatism, in other words, the way that climatism, human societies with diverse cultures, and the surrounding environment interact with each other, is raised. And, in general, the way that an architecture work to interact with its environment is discussed. In this sense, the traditional and indigenous architecture, and the fluidity of the region in the architectural framework also address the characteristics of the physical and architectural features of each region from the architectural arena, introducing effective approaches to architecture and urban planning (objective and tactical approaches), using the rational-logical approach to regional review. Then, the discussion of regionalism and regional influences in the physical fabric of each traditional architectural structure’s region is presented, with the special look of traditional architecture that is expressed in consistency between the building and the nature, and to explain the arguments to the examples and characteristics.
基金This project is supported by National Natural Science Foundation ofChina(No.l9832020) and National Outstanding Youth Science Foundation ofChina(No.10125208).
文摘A physical value mapping (PVM) algorithm based on finite element mesh from the stamped part in stamping process to the product is presented, In order to improve the efficiency of the PVM algorithm, a search way from the mesh of the product to the mesh of the stamped part will be adopted. At the same time, the search process is divided into two steps: entire search (ES) and local search (LS), which improve the searching efficiency. The searching area is enlarged to avoid missing projection elements in ES process. An arc-length method is introduced in LS process. The validity is confirmed by the results of the complex industry-forming product.
基金"Twelfth Five-year Plan"for Sci & Tech Research of China(No.2011BAG03B02No.2011BAG03B06)
文摘Front bumper, crash box and side rail are key body structural parts in front crash. Deformation space is affected by compartment packaging. The improvement suggestions are proposed to solve the problems existed in the current vehicle struc- ture and compartment packaging based on the areas that influence performance of automobile offset deformable barrier impact, such as the side rail, mounting, storage battery packaging,etc. It is proved that dO % offset crash simulation result of one certain car is well-correlated with the physical test. Optimization cases meet the crash performance requirements. The objec- tive of the analysis is to guide structural design and improves a car' s crash safety performance.
基金supported by the National Natural Science Foundation of China(51222902,51221961,and 51379032)the Program for New Century Excellent Talents in University(NCET-130076)+2 种基金The Fundamental Research Fund for the Central University(HEUCF140103)The Open Fund of State Key Laboratory of Coastal and Offshore Engineering(LP1407)the Lloyd’s Register Foundation (LRF) through the Joint Centre Involving University College London,Shanghai Jiaotong University and Harbin Engineering University
文摘The nonlinear radiated waves generated by a structure in forced motion, are simulated numerically based on the potential theory. A fully nonlinear numerical model is developed by using a higher-order boundary element method (HOBEM). In this model, the instantaneous body position and the transient free surface are updated at each time step. A Lagrangian technique is employed as the time marching scheme on the free surface. The mesh regridding and interpolation methods are adopted to deal with the possible numerical instability. Several auxiliary functions are proposed to calculate the wave loads indirectly, instead of directly predicting the temporal derivative of the velocity potential. Numerical experiments are carried out to simulate the heave motions of a submerged sphere in infinite water depth, the heave and pitch motions of a truncated flared cylinder in finite depth. The results are verified against the published numerical results to ensure the effectiveness of the proposed model. Moreover, a series of higher harmonic waves and force components are obtained by the Fourier transformation to investigate the nonlinear effect of oscillation frequency. The difference among fully nonlinear, body-nonlinear and linear results is analyzed. It is found that the nonlinearity due to free surface and body surface has significant influences on the numerical results of the radiated waves and forces.