The ecological greening technology of the bare rock area of the arbor governance be-longs to the field of ecological environment restoration, selection of suitable arbors for vegetation restoration in bare rock area, ...The ecological greening technology of the bare rock area of the arbor governance be-longs to the field of ecological environment restoration, selection of suitable arbors for vegetation restoration in bare rock area, vegetation recovery is the primary approach to governance the ecological environment of bare rock area. The reconstruction of bare rock area arbor-shrub-grass ecosystems is a global environmental science problem. Paying attention to Geological conditions with rich rock fissures and abundant groundwater in these fissures, following the idea to reconstruct ecosystem from arbor to shrub and grass and the principle one tree in a baseplate, authors develop a baseplate technique for tree planting in bare rock area. The baseplate includes the parent body, the root, and the cover to prevent evaporation. Especially, there are filled in nutritional soil for the parent body and the root, and the composition of nutritional soil are selected by test in laboratory, while optimal mix ratio of the composition is obtained. Then, application method in field is put forward. The technique can guarantee survival at early stage and growth in the later for tree planting in the baseplate. In particular, the root provides a good channel to guide tree roots into fissure rock and absorb groundwater in rock. Test in field shows that the baseplate technique has strong practicality in vegetation recovery of bare rock area. Test in field shows that the baseplate technique has strong practicality in vegetation recovery of bare rock area in the world.展开更多
Understanding the impact of rock bareness on the transpiration in karst plants is essential to karst rocky desertification control and sustainable management of plantation in karst area.This study focused on the varia...Understanding the impact of rock bareness on the transpiration in karst plants is essential to karst rocky desertification control and sustainable management of plantation in karst area.This study focused on the variations in sap flow of Zenia insignis caused by different rock bareness rate,and the impact of climate factors,soil water content(SWC)and leaf area index(LAI) on transpiration in karst plants,by continuously measuring sap flux densities (Fcd)of 12 sample trees using thermal dissipation probes and monitoring micrometeorology and SwC on a typical karst hill in north Guangdong of China during the year of 2016.Results show that:(1)the maximum hourly sap flux density occurred at11:00-14:00 and the peak daily sap flux density occurred in September.(2)Sap flow density of Zenia insignis increased with rock bareness rate at all hourly,daily and monthly scales,with the sequence of extremely severe>severe>moderate>mild rock bareness.(3)The transpiration of Zenia insi.gnis is controlled by different factors at different temporalscales.At hourly scale,transpiration was highly(n=144,R^2>0.72)correlated to Solar radiation(Rs),Air temperature(Ta),relative humidity(RH),and water vapor pressure deficit(VPD).At daily scale,transpiration was greatly(n=366,R2>0.31)affected by Solar radiation(Rs),Air temperature(Ta),and water vapor pressure deficit (VPD).While at monthly scale,transpiration was mainly(n=12,R^2=0.85)controlled by LAI.Our study proved that Zenia insi.gnis has a good physiecological adaption to fragile karst environment,and Zenia insignis plantation has long-term sustainability even in extremely rocky landscapes.The results may provide scientific basis for plantation management and ecological restoration in karst area.展开更多
Information on the Fe content of bare rocks is needed for implementing geochemical processes and identifying mines.However,the influence of Fe content on the spectra of bare rocks has not been thoroughly analyzed in p...Information on the Fe content of bare rocks is needed for implementing geochemical processes and identifying mines.However,the influence of Fe content on the spectra of bare rocks has not been thoroughly analyzed in previous studies.The Saur Mountain region within the Hoboksar of the Russell Hill depression was selected as the study area.Specifically,we analyzed six hyperspectral indices related to rock Fe content based on laboratory measurements(Dataset I)and field measurements(Dataset II).In situ field measurements were acquired to verify the laboratory measurements.Fe content of the rock samples collected from different fresh and weathered rock surfaces were divided into six levels to reveal the spatial distributions of Fe content of these samples.In addition,we clearly displayed wavelengths with obvious characteristics by analyzing the spectra of these samples.The results of this work indicated that Fe content estimation models based on the fresh rock surface measurements in the laboratory can be applied to in situ field or satellite-based measurements of Fe content of the weathered rock surfaces.It is not the best way to use only the single wavelengths reflectance at all absorption wavelengths or the depth of these absorption features to estimate Fe content.Based on sample data analysis,the comparison with other indices revealed that the performance of the modified normalized difference index is the best indicator for estimating rock Fe content,with R2 values of 0.45 and 0.40 corresponding to datasets I and II,respectively.Hence,the modified normalized difference index(the wavelengths of 2220,2290,and 2370 nm)identified in this study could contribute considerably to improve the identification accuracy of rock Fe content in the bare rock areas.The method proposed in this study can obviously provide an efficient solution for large-scale rock Fe content measurements in the field.展开更多
文摘The ecological greening technology of the bare rock area of the arbor governance be-longs to the field of ecological environment restoration, selection of suitable arbors for vegetation restoration in bare rock area, vegetation recovery is the primary approach to governance the ecological environment of bare rock area. The reconstruction of bare rock area arbor-shrub-grass ecosystems is a global environmental science problem. Paying attention to Geological conditions with rich rock fissures and abundant groundwater in these fissures, following the idea to reconstruct ecosystem from arbor to shrub and grass and the principle one tree in a baseplate, authors develop a baseplate technique for tree planting in bare rock area. The baseplate includes the parent body, the root, and the cover to prevent evaporation. Especially, there are filled in nutritional soil for the parent body and the root, and the composition of nutritional soil are selected by test in laboratory, while optimal mix ratio of the composition is obtained. Then, application method in field is put forward. The technique can guarantee survival at early stage and growth in the later for tree planting in the baseplate. In particular, the root provides a good channel to guide tree roots into fissure rock and absorb groundwater in rock. Test in field shows that the baseplate technique has strong practicality in vegetation recovery of bare rock area. Test in field shows that the baseplate technique has strong practicality in vegetation recovery of bare rock area in the world.
基金supported by the project of the National Natural Science Foundation of China entitled ‘‘Impact of rocky desertification on stand transpiration of Zenia insignis plantation and the mechanism’’ (No. 41401108)the project of the National Natural Science Foundation of China entitled ‘‘The impact of development of soil cracks in collapsed walls on wall collapsing stability in granite red soil region of south China’’ (No. 41371041)
文摘Understanding the impact of rock bareness on the transpiration in karst plants is essential to karst rocky desertification control and sustainable management of plantation in karst area.This study focused on the variations in sap flow of Zenia insignis caused by different rock bareness rate,and the impact of climate factors,soil water content(SWC)and leaf area index(LAI) on transpiration in karst plants,by continuously measuring sap flux densities (Fcd)of 12 sample trees using thermal dissipation probes and monitoring micrometeorology and SwC on a typical karst hill in north Guangdong of China during the year of 2016.Results show that:(1)the maximum hourly sap flux density occurred at11:00-14:00 and the peak daily sap flux density occurred in September.(2)Sap flow density of Zenia insignis increased with rock bareness rate at all hourly,daily and monthly scales,with the sequence of extremely severe>severe>moderate>mild rock bareness.(3)The transpiration of Zenia insi.gnis is controlled by different factors at different temporalscales.At hourly scale,transpiration was highly(n=144,R^2>0.72)correlated to Solar radiation(Rs),Air temperature(Ta),relative humidity(RH),and water vapor pressure deficit(VPD).At daily scale,transpiration was greatly(n=366,R2>0.31)affected by Solar radiation(Rs),Air temperature(Ta),and water vapor pressure deficit (VPD).While at monthly scale,transpiration was mainly(n=12,R^2=0.85)controlled by LAI.Our study proved that Zenia insi.gnis has a good physiecological adaption to fragile karst environment,and Zenia insignis plantation has long-term sustainability even in extremely rocky landscapes.The results may provide scientific basis for plantation management and ecological restoration in karst area.
基金This study was funded by the Xinjiang Science and Technology Major Project(2021A03001-3)the National Key R&D Program of China(2018YFC0604001-3)+1 种基金the B&R Team of Chinese Academy of Sciences(2017-XBZG-BR-002)the National Natural Science Foundation of China(U1803117,U1803241).
文摘Information on the Fe content of bare rocks is needed for implementing geochemical processes and identifying mines.However,the influence of Fe content on the spectra of bare rocks has not been thoroughly analyzed in previous studies.The Saur Mountain region within the Hoboksar of the Russell Hill depression was selected as the study area.Specifically,we analyzed six hyperspectral indices related to rock Fe content based on laboratory measurements(Dataset I)and field measurements(Dataset II).In situ field measurements were acquired to verify the laboratory measurements.Fe content of the rock samples collected from different fresh and weathered rock surfaces were divided into six levels to reveal the spatial distributions of Fe content of these samples.In addition,we clearly displayed wavelengths with obvious characteristics by analyzing the spectra of these samples.The results of this work indicated that Fe content estimation models based on the fresh rock surface measurements in the laboratory can be applied to in situ field or satellite-based measurements of Fe content of the weathered rock surfaces.It is not the best way to use only the single wavelengths reflectance at all absorption wavelengths or the depth of these absorption features to estimate Fe content.Based on sample data analysis,the comparison with other indices revealed that the performance of the modified normalized difference index is the best indicator for estimating rock Fe content,with R2 values of 0.45 and 0.40 corresponding to datasets I and II,respectively.Hence,the modified normalized difference index(the wavelengths of 2220,2290,and 2370 nm)identified in this study could contribute considerably to improve the identification accuracy of rock Fe content in the bare rock areas.The method proposed in this study can obviously provide an efficient solution for large-scale rock Fe content measurements in the field.