The metal-organic chemical vapor deposition (MOCVD) technique is a promising process for high-temperature superconductor YBa2Cu3O7-δ(YBCO) preparation. In this technique, it is a challenge to obtain barium precursors...The metal-organic chemical vapor deposition (MOCVD) technique is a promising process for high-temperature superconductor YBa2Cu3O7-δ(YBCO) preparation. In this technique, it is a challenge to obtain barium precursors with high volatility. In addition, the purity, evaporation characteristics and thermostability of adopted precursors in the whole process would decide the quality and reproducible results of YBCO film. In the present report, the barium precursor containing 2,2,6,6-tetramethylheptane-3,5-dionate and tetraethylenepentamine ligands (Ba(TMHD)-tetraen) was synthesized and identified by FTIR, 1H NMR, 13C NMR and ESI-MS spectroscopy. Subsequently the thermal property and the kinetics of decomposition were systematically investigated by combining non-isothermal thermogravimetric analysis methods (TGA), Ozawa, Kissinger and Friedman methods. On the basis of the apparent activation energy of the evaporation process, the thermostability and evaporation characteristics of the precursors were discussed. All results show that Ba(TMHD)-tetraen has higher volatility than Ba(TMHD)2, but it is unstable and highly sensitive to the change of temperature during the whole evaporation process. Therefore, it is very important to choose suitable volatilization technology and conditions for avoiding Ba(TMHD)-tetraen breakdown (or thermal aging) during the MOCVD process.展开更多
基金financially supported by the Major State Basic Research Development Program of China(973Program)(No.2011CBA00105)the National Natural Science Foundation of China(Nos.51002149and21101151)
文摘The metal-organic chemical vapor deposition (MOCVD) technique is a promising process for high-temperature superconductor YBa2Cu3O7-δ(YBCO) preparation. In this technique, it is a challenge to obtain barium precursors with high volatility. In addition, the purity, evaporation characteristics and thermostability of adopted precursors in the whole process would decide the quality and reproducible results of YBCO film. In the present report, the barium precursor containing 2,2,6,6-tetramethylheptane-3,5-dionate and tetraethylenepentamine ligands (Ba(TMHD)-tetraen) was synthesized and identified by FTIR, 1H NMR, 13C NMR and ESI-MS spectroscopy. Subsequently the thermal property and the kinetics of decomposition were systematically investigated by combining non-isothermal thermogravimetric analysis methods (TGA), Ozawa, Kissinger and Friedman methods. On the basis of the apparent activation energy of the evaporation process, the thermostability and evaporation characteristics of the precursors were discussed. All results show that Ba(TMHD)-tetraen has higher volatility than Ba(TMHD)2, but it is unstable and highly sensitive to the change of temperature during the whole evaporation process. Therefore, it is very important to choose suitable volatilization technology and conditions for avoiding Ba(TMHD)-tetraen breakdown (or thermal aging) during the MOCVD process.