By combining magnetics, acoustics and electrics, the magneto-acoustic-electrical tomography(MAET) proves to possess the capability of differentiating electrical impedance variation and thus improving the spatial res...By combining magnetics, acoustics and electrics, the magneto-acoustic-electrical tomography(MAET) proves to possess the capability of differentiating electrical impedance variation and thus improving the spatial resolution. However,the signal-to-noise ratio(SNR) of the collected MAET signal is still unsatisfactory for biological tissues with low-level electrical conductivity. In this study, the formula of MAET measurement with sinusoid-Barker coded excitation is derived and simplified for a planar piston transducer. Numerical simulations are conducted for a four-layered gel phantom with the 13-bit sinusoid-Barker coded excitation, and the performances of wave packet recovery with side-lobe suppression are improved by using the mismatched compression filter, which is also demonstrated by experimentally measuring a three-layered gel phantom. It is demonstrated that comparing with the single-cycle sinusoidal excitation, the amplitude of the driving signal can be reduced greatly with an SNR enhancement of 10 dB using the 13-bit sinusoid-Barker coded excitation. The amplitude and polarity of the wave packet filtered from the collected MAET signal can be used to achieve the conductivity derivative at the tissue boundary. In this study, we apply the sinusoid-Barker coded modulation method and the mismatched suppression scheme to MAET measurement to ensure the safety for biological tissues with improved SNR and spatial resolution, and suggest the potential applications in biomedical imaging.展开更多
Single pulse excited ultrasonic guided wave surfers high attenuation during the propagation in long bones.This results in small amplitude and low signal-to-noise ratio(SNR)of measured signals.Thus,the Barker code ex...Single pulse excited ultrasonic guided wave surfers high attenuation during the propagation in long bones.This results in small amplitude and low signal-to-noise ratio(SNR)of measured signals.Thus,the Barker code excitation is introduced into long bone detection to improve the quality of received signals,due to its efficiency in increasing amplitude and SNR.Both simulation and in vitro experiment were performed,and the results were decoded by the weighted match filter(WMF) and the finite impulse response- least squares inverse filter(FIRLSIF),respectively.The comparison between the results of Barker code excitation and sine pulse excitation was presented.For 13-bit Barker code excitation,WMF produced 13 times larger amplitude than sine pulse excitation,while FIR-LSIF achieved higher peak-sidelobe-level(PSL) of -63.59 dB and better performance in noise suppression.The results show that the Barker code excited guided waves have the potential to be applied to the long bone detection.展开更多
A simple and convcnient method to gain bulk acoustic wave Barker code sequence is presented and the results of the correlation are givcn. The transducer response to a unit electric pulse is used as a unit code constit...A simple and convcnient method to gain bulk acoustic wave Barker code sequence is presented and the results of the correlation are givcn. The transducer response to a unit electric pulse is used as a unit code constituting the Barker code sequence of acoustic signal. The phase precision of the code sequence as well as the fairly ideal response function are guaranteed by the high accuraey of a DATA-2020 Arbitrary Waveform Synthesizer and a DATA-6000 Universal Wavcform Analyzer. Some deviations between the experiments and thcory are caused by the transient response and timc delay characteristics of the ultrasonic tansducer.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11474166 and 11604156)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20161013)+2 种基金the Postdoctoral Science Foundation of China(Grant No.2016M591874)the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(Grant No.KYCX17 1083)the Priority Academic Program Development of Jiangsu Provincial Higher Education Institutions,China
文摘By combining magnetics, acoustics and electrics, the magneto-acoustic-electrical tomography(MAET) proves to possess the capability of differentiating electrical impedance variation and thus improving the spatial resolution. However,the signal-to-noise ratio(SNR) of the collected MAET signal is still unsatisfactory for biological tissues with low-level electrical conductivity. In this study, the formula of MAET measurement with sinusoid-Barker coded excitation is derived and simplified for a planar piston transducer. Numerical simulations are conducted for a four-layered gel phantom with the 13-bit sinusoid-Barker coded excitation, and the performances of wave packet recovery with side-lobe suppression are improved by using the mismatched compression filter, which is also demonstrated by experimentally measuring a three-layered gel phantom. It is demonstrated that comparing with the single-cycle sinusoidal excitation, the amplitude of the driving signal can be reduced greatly with an SNR enhancement of 10 dB using the 13-bit sinusoid-Barker coded excitation. The amplitude and polarity of the wave packet filtered from the collected MAET signal can be used to achieve the conductivity derivative at the tissue boundary. In this study, we apply the sinusoid-Barker coded modulation method and the mismatched suppression scheme to MAET measurement to ensure the safety for biological tissues with improved SNR and spatial resolution, and suggest the potential applications in biomedical imaging.
基金supported by the NSFC(11174060,11327405)the Science and Technology Support Program of Shanghai(13441901900)the Ph.D.Programs Foundation of the Ministry of Education of China(20110071130004,20130071110020)
文摘Single pulse excited ultrasonic guided wave surfers high attenuation during the propagation in long bones.This results in small amplitude and low signal-to-noise ratio(SNR)of measured signals.Thus,the Barker code excitation is introduced into long bone detection to improve the quality of received signals,due to its efficiency in increasing amplitude and SNR.Both simulation and in vitro experiment were performed,and the results were decoded by the weighted match filter(WMF) and the finite impulse response- least squares inverse filter(FIRLSIF),respectively.The comparison between the results of Barker code excitation and sine pulse excitation was presented.For 13-bit Barker code excitation,WMF produced 13 times larger amplitude than sine pulse excitation,while FIR-LSIF achieved higher peak-sidelobe-level(PSL) of -63.59 dB and better performance in noise suppression.The results show that the Barker code excited guided waves have the potential to be applied to the long bone detection.
文摘A simple and convcnient method to gain bulk acoustic wave Barker code sequence is presented and the results of the correlation are givcn. The transducer response to a unit electric pulse is used as a unit code constituting the Barker code sequence of acoustic signal. The phase precision of the code sequence as well as the fairly ideal response function are guaranteed by the high accuraey of a DATA-2020 Arbitrary Waveform Synthesizer and a DATA-6000 Universal Wavcform Analyzer. Some deviations between the experiments and thcory are caused by the transient response and timc delay characteristics of the ultrasonic tansducer.