期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
An Analytic Solution to Well-water Level Changes under Barometric Pressure
1
作者 Liu Chunping Deng Liang +2 位作者 Liao Xin Wan Fei Shi Yun 《Earthquake Research in China》 2011年第2期240-249,共10页
Under barometric pressure, groundwater flow in well-aquifer systems is a kind of hydromechanical coupling problem. Applying the flux boundary conditions on borehole wall and water pressure equilibrium conditions insid... Under barometric pressure, groundwater flow in well-aquifer systems is a kind of hydromechanical coupling problem. Applying the flux boundary conditions on borehole wall and water pressure equilibrium conditions inside and outside the borehole wall under barometric pressure (BP), an analytic solution to well-water level changes has been proposed in this paper. The formulation shows that the BP coefficients increase with time and tend to BP constant. The Change of BP coefficients over time depends only on the ratio of transmissivity (T) to the well radius squared ( r2, ) , and has nothing to do with the change in BP. The BP constant only relates to aquifer loading efficiency (B), and has nothing to do with the aquifer transmissivity and well radius. The BP coefficients' change over time in the analytic formulation is consistent with the analysis of measured data from the Nanxi wells. Based on the BP coefficient changes over time, a parameter estimation method is suggested and discussed in its application to the estimation of the aquifer BP constant (or B) and transmissivity by using the Nanxi well data. 展开更多
关键词 Well-water level barometric pressure Analytic solution PARAMETERESTIMATION barometric pressure coefficient
下载PDF
Removing barometric pressure effects from groundwater level and identifying main influential constituents 被引量:3
2
作者 ZHAO Dan WANG GuangCai 《Science China(Technological Sciences)》 SCIE EI CAS 2013年第1期129-136,共8页
Changes in barometric pressure can affect the micro-dynamic state of groundwater level.The groundwater level data carry a lot of important information of tectonic activity and earthquakes.It is very significant to eli... Changes in barometric pressure can affect the micro-dynamic state of groundwater level.The groundwater level data carry a lot of important information of tectonic activity and earthquakes.It is very significant to eliminate the barometric pressure effects from the groundwater level data in order to recognize seismic anomalies effectively.With the analysis of the main influential constituents of barometric pressure and their changes,we can have a better understanding of the changes of the aquifer medium,which can provide useful information for earthquake prediction.Taking the May 12,2008 Wenchuan earthquake as an example,this paper deals with the influence of barometric pressure on groundwater level based on observational data from Nanxi,Qionglai and Chaohu wells.The methods of the linear regression and the deconvolution regression were employed to remove the barometric pressure from the groundwater level data.The harmonic analysis and the spectral analysis were used to recognize the main influential waves of barometric pressure effect.A comparison was conducted on the main influential waves before and after the earthquake.The results showed that the main influential waves of barometric pressure effect changed and the amplitudes of all constituents also changed.This phenomenon may result from the characteristics of the influential constituents of pressure,or from the changes of the aquifer medium,which were caused by the earthquake. 展开更多
关键词 groundwater level barometric pressure effect water level correction influential constituents
原文传递
Computational fluid dynamics simulation on the longwall gob breathing 被引量:5
3
作者 Samuel A.Lolon Jürgen F.Brune +3 位作者 Gregory E.Bogin Jr. John W.Grubb Saqib A.Saki Aditya Juganda 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第2期185-189,共5页
In longwall mines, atmospheric pressure fluctuations can disturb the pressure balance between the gob and the ventilated working area, resulting in a phenomenon known as ‘‘gob breathing". Gob breathing triggers... In longwall mines, atmospheric pressure fluctuations can disturb the pressure balance between the gob and the ventilated working area, resulting in a phenomenon known as ‘‘gob breathing". Gob breathing triggers gas flows across the gob and the working areas and may result in a condition where an oxygen deficient mixture or a methane accumulation in the gob flows into the face area. Computational Fluid Dynamics(CFDs) modeling was carried out to analyze this phenomenon and its impact on the development of an explosive mixture in a bleeder-ventilated panel scheme. Simulation results indicate that the outgassing and ingassing across the gob and the formation of Explosive Gas Zones(EGZs) are directly affected by atmospheric pressure changes. In the location where methane zones interface with mine air, EGZ fringes may form along the face and in the bleeder entries. These findings help assess the methane ignition and explosion risks associated with fluctuating atmospheric pressures. 展开更多
关键词 CFDs Gob breathing barometric pressure Explosive gas zone Longwall mine Methane explosion
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部