A weak nonlinear model of a two-layer barotropic ocean with Rayleigh dissipation is built.The analytic asymptotic solution is derived in the mid-latitude stationary wind field,and the physical meaning of the correspon...A weak nonlinear model of a two-layer barotropic ocean with Rayleigh dissipation is built.The analytic asymptotic solution is derived in the mid-latitude stationary wind field,and the physical meaning of the corresponding problem is discussed.展开更多
The Charney model is reexamined using a new mathematical tool, the multiscale window transform(MWT), and the MWT-based localized multiscale energetics analysis developed by Liang and Robinson to deal with realistic ge...The Charney model is reexamined using a new mathematical tool, the multiscale window transform(MWT), and the MWT-based localized multiscale energetics analysis developed by Liang and Robinson to deal with realistic geophysical fluid flow processes. Traditionally, though this model has been taken as a prototype of baroclinic instability, it actually undergoes a mixed one. While baroclinic instability explains the bottom-trapped feature of the perturbation, the second extreme center in the perturbation field can only be explained by a new barotropic instability when the Charney–Green number γ 1, which takes place throughout the fluid column, and is maximized at a height where its baroclinic counterpart stops functioning.The giving way of the baroclinic instability to a barotropic one at this height corresponds well to the rectification of the tilting found on the maps of perturbation velocity and pressure. Also established in this study is the relative importance of barotropic instability to baroclinic instability in terms of γ. When γ 1, barotropic instability is negligible and hence the system can be viewed as purely baroclinic;when γ 1, however, barotropic and baroclinic instabilities are of the same order;in fact, barotropic instability can be even stronger. The implication of these results has been discussed in linking them to real atmospheric processes.展开更多
Based on the barotropic equations including large-scale topography, friction and heat factor, a barotropic quasi-geostrophic model with large-scale topography, friction and heating is obtained by means of scale analys...Based on the barotropic equations including large-scale topography, friction and heat factor, a barotropic quasi-geostrophic model with large-scale topography, friction and heating is obtained by means of scale analysis and small parameter method. It is shown that this equation is a basic one, which is used to study the influence of the Tibetan Plateau on the large-scale flow in the atmosphere. If the friction and heating effect of large-scale topography are neglected, this model will degenerate to the general barotropic quasi-geostrophic one.展开更多
The method of automatically generating generalized curvilinear meshes has many advantages and is beginning to be used in ocean simulations. This three dimensional (3 D) coastal barotropic model in generalized curvilin...The method of automatically generating generalized curvilinear meshes has many advantages and is beginning to be used in ocean simulations. This three dimensional (3 D) coastal barotropic model in generalized curvilinear grids was developed to simulate the M 2, S 2, K 1 and O 1 tidal waves in the Bohai Sea, China. The numerical results agreeing with observations showed that the method is an effective tool for improving accuracy of simulations in shallow shelf seas, especially in the near coast region, if the pseudo effect there usually caused by rectangular grids can be removed.展开更多
In a barotropic atmosphere, new Reynolds mean momentum equations including turbulent viscosity, dispersion, and instability are used not only to derive the KdV-Burgers-Kuramoto equation but also to analyze the physica...In a barotropic atmosphere, new Reynolds mean momentum equations including turbulent viscosity, dispersion, and instability are used not only to derive the KdV-Burgers-Kuramoto equation but also to analyze the physical mechanism of the cascades of energy and enstrophy. It shows that it is the effects of dispersion and instability that result in the inverse cascade. Then based on the conservation laws of the energy and enstrophy, a cascade model is put forward and the processes of the cascades are described.展开更多
The equations of barotropic model are used to discuss the effects of diabatic factors such as heat-ing of convective condensation, evaporation-wind feedback and CISK on the Rossby wave and the Kelvin wave. In low lati...The equations of barotropic model are used to discuss the effects of diabatic factors such as heat-ing of convective condensation, evaporation-wind feedback and CISK on the Rossby wave and the Kelvin wave. In low latitudes we have obtained the angular frequency and analyzed the period and stability of waves. The result shows the existence of the diabatic factors not only enlarges the period of adiabatic waves but also changes the stability of waves. Thus we think that the so-called intraseasonal oscillation and some other low-frequency oscillations are a kind of diabatic waves which are important factors producing the long-term weather changes and short-term climatic evolution.展开更多
The existence and solution of the non-dispersive periodic solution are achieved concerning nonlinear barotropic Rossby waves of a barotropic semi-geostrophic model, demonstrating the likelihood of the Taylor evolution...The existence and solution of the non-dispersive periodic solution are achieved concerning nonlinear barotropic Rossby waves of a barotropic semi-geostrophic model, demonstrating the likelihood of the Taylor evolution, together with the related dimensionless a-criterion. Finally, the wave velocity expression is proposed with some diagnostic relations among the wave parameters.展开更多
Variations in wave energy and amplitude for Rossby waves are investigated by solving the wave energy equation for the quasigeostrophic barotropic potential vorticity model.The results suggest that compared with rays i...Variations in wave energy and amplitude for Rossby waves are investigated by solving the wave energy equation for the quasigeostrophic barotropic potential vorticity model.The results suggest that compared with rays in the nondivergent barotropic model,rays in the divergent model can have enhanced meridional and zonal propagation,accompanied by a more dramatic variability in both wave energy and amplitude,which is caused by introducing the divergence effect of the free surface in the quasigeostrophic model.For rays propagating in a region enclosed by a turning latitude and a critical latitude,the wave energy approaches the maximum value inside the region,while the amplitude approaches the maximum at the turning latitude.Waves can develop when both the wave energy and amplitude increase.For rays propagating in a region enclosed by two turning latitudes,the wave energy approaches the minimum value at one turning latitude and the maximum value at the other latitude,while the total wavenumber approaches the maximum value inside the region.The resulting amplitude increases if the total wavenumber decreases or the wave energy increases more significantly and decreases if the total wavenumber increases or the wave energy decreases more significantly.The matched roles of the energy from the basic flow and the divergence of the group velocity contribute to the slightly oscillating wave energy,which causes a slightly oscillating amplitude as well as the slightly oscillating total wavenumber.展开更多
The impact of initial guess and grid resolutions on the analysis and prediction has been investigated over the Indian region. For this purpose, an univariate objective analysis scheme and a primitive equation barotrop...The impact of initial guess and grid resolutions on the analysis and prediction has been investigated over the Indian region. For this purpose, an univariate objective analysis scheme and a primitive equation barotropic model have been used. The impact of initial guess and the resolutions on analysis and prediction is discussed.展开更多
Groins are employed to prevent nearshore areas from erosion and to control the direction of flow. However, the groin structure and its associated flow characteristics are the main causes of local erosion. In this stud...Groins are employed to prevent nearshore areas from erosion and to control the direction of flow. However, the groin structure and its associated flow characteristics are the main causes of local erosion. In this study, we investigate the flow patterns around refractive and right-angle groins. In particular, we analytically compare the flow characteristics around a refractive groin and study the degree of accuracy that can be achieved by using a right-angle groin of various projected lengths. To compare the flow characteristics, we replaced the right-angle groin with an approximation of a refractive groin. This replacement had the least effect on the maximum velocity of flow in the channel. Moreover, we investigated the distribution of the density variables of temperature and salinity, and their effects on the flow characteristics around the right-angle groin. A comparison of the flow analysis results in baroclinic and barotropic conditions reveals that the flow characteristic values are very similar for both the refractive and right-angle groins. The geometry of the groin, i.e., right-angle or refractive, has little effect on the maximum speed to relative average speed. Apart from the angular separation, the arm length of the groin in downstream refractive groins has less effect on other flow characteristics than do upstream refractive groins. We also correlated a number of non-dimensional variables with respect to various flow characteristics and groin geometry. These comparisons indicate that the correlation between the thalweg height and width of the channel and groin arm's length to projection length have been approximated using linear and nonlinear formulas regardless of inner velocity in the subcritical flow.展开更多
A time delay model of a two-layer barotropic ocean with Rayleigh dissipation is built. Using the improved perturba- tion method, an analytic asymptotic solution of a better approximate degree is obtained in the mid-la...A time delay model of a two-layer barotropic ocean with Rayleigh dissipation is built. Using the improved perturba- tion method, an analytic asymptotic solution of a better approximate degree is obtained in the mid-latitude wind field, and the physical meaning of the corresponding solution is also discussed.展开更多
We study the evolution of the dark energy parameter within a Bianchi type-I cosmological model filled with barotropic fluid and dark energy. The solutions have been obtained for power law and exponential forms of the ...We study the evolution of the dark energy parameter within a Bianchi type-I cosmological model filled with barotropic fluid and dark energy. The solutions have been obtained for power law and exponential forms of the expansion parameter (they correspond to a constant deceleration parameter in general relativity). After a long time, the models tend to be isotropic under certain conditions.展开更多
In order to consider both the deterministic and the stochastic property of atmospheric motion simul- taneously,in this paper,the weather prediction is proposed as the problem of the evolution of meteorological field.T...In order to consider both the deterministic and the stochastic property of atmospheric motion simul- taneously,in this paper,the weather prediction is proposed as the problem of the evolution of meteorological field.The historical viewpoint of atmospheric motion is emphasized here.Based on time series analysis te- chnique,a stochastic-dynamical model with multiple initial fields is derived.Thus,weather forecasting is sum- meal up as a problem of solving a set of stochastic difference equations.For the barotropic atmosphere,the numerical solutions of the equations are obtained by using the method of empirical orthogonal functions (EOF),and examples of medium-range weather prediction are given here.Meanwhile,selecting the order of time series,i.e.,determining the number of initial fields properly,is also discussed.展开更多
基金Project supported by the National Basic Research Program of China (Grant No. 2011CB403501)the National Natural Science Foundation of China (GrantNos. 41175058,41275062,and 11202106)
文摘A weak nonlinear model of a two-layer barotropic ocean with Rayleigh dissipation is built.The analytic asymptotic solution is derived in the mid-latitude stationary wind field,and the physical meaning of the corresponding problem is discussed.
基金supported by the National Science Foundation of China (Grant Nos. 41276032 and 41705024)the National Program on Global Change and Air–Sea Interaction (Grant No. GASIIPOVAI-06)the Jiangsu Provincial Government through the 2015 Jiangsu Program of Entrepreneurship and Innovation Group and the Jiangsu Chair Professorship, and Shandong Meteorological Bureau (Contract No. QXPG20174023)
文摘The Charney model is reexamined using a new mathematical tool, the multiscale window transform(MWT), and the MWT-based localized multiscale energetics analysis developed by Liang and Robinson to deal with realistic geophysical fluid flow processes. Traditionally, though this model has been taken as a prototype of baroclinic instability, it actually undergoes a mixed one. While baroclinic instability explains the bottom-trapped feature of the perturbation, the second extreme center in the perturbation field can only be explained by a new barotropic instability when the Charney–Green number γ 1, which takes place throughout the fluid column, and is maximized at a height where its baroclinic counterpart stops functioning.The giving way of the baroclinic instability to a barotropic one at this height corresponds well to the rectification of the tilting found on the maps of perturbation velocity and pressure. Also established in this study is the relative importance of barotropic instability to baroclinic instability in terms of γ. When γ 1, barotropic instability is negligible and hence the system can be viewed as purely baroclinic;when γ 1, however, barotropic and baroclinic instabilities are of the same order;in fact, barotropic instability can be even stronger. The implication of these results has been discussed in linking them to real atmospheric processes.
基金RFDP and key national research project "Tibetan Plateau
文摘Based on the barotropic equations including large-scale topography, friction and heat factor, a barotropic quasi-geostrophic model with large-scale topography, friction and heating is obtained by means of scale analysis and small parameter method. It is shown that this equation is a basic one, which is used to study the influence of the Tibetan Plateau on the large-scale flow in the atmosphere. If the friction and heating effect of large-scale topography are neglected, this model will degenerate to the general barotropic quasi-geostrophic one.
文摘The method of automatically generating generalized curvilinear meshes has many advantages and is beginning to be used in ocean simulations. This three dimensional (3 D) coastal barotropic model in generalized curvilinear grids was developed to simulate the M 2, S 2, K 1 and O 1 tidal waves in the Bohai Sea, China. The numerical results agreeing with observations showed that the method is an effective tool for improving accuracy of simulations in shallow shelf seas, especially in the near coast region, if the pseudo effect there usually caused by rectangular grids can be removed.
基金supported by the National Natural Science Foundation of China under Grant No.40175016the Research Fund for the Doctoral Programs of Higher Education under Grant No.2000000156.
文摘In a barotropic atmosphere, new Reynolds mean momentum equations including turbulent viscosity, dispersion, and instability are used not only to derive the KdV-Burgers-Kuramoto equation but also to analyze the physical mechanism of the cascades of energy and enstrophy. It shows that it is the effects of dispersion and instability that result in the inverse cascade. Then based on the conservation laws of the energy and enstrophy, a cascade model is put forward and the processes of the cascades are described.
基金Theoretic research on mechanisms and prediction of major climatic catastrophes in China as first started item in the key national development plan for fundamental study key laboratory of fluid dynam-ics and marine science and numerica
文摘The equations of barotropic model are used to discuss the effects of diabatic factors such as heat-ing of convective condensation, evaporation-wind feedback and CISK on the Rossby wave and the Kelvin wave. In low latitudes we have obtained the angular frequency and analyzed the period and stability of waves. The result shows the existence of the diabatic factors not only enlarges the period of adiabatic waves but also changes the stability of waves. Thus we think that the so-called intraseasonal oscillation and some other low-frequency oscillations are a kind of diabatic waves which are important factors producing the long-term weather changes and short-term climatic evolution.
基金This work is supported by the SMA Meteorological Funds for young researchers.
文摘The existence and solution of the non-dispersive periodic solution are achieved concerning nonlinear barotropic Rossby waves of a barotropic semi-geostrophic model, demonstrating the likelihood of the Taylor evolution, together with the related dimensionless a-criterion. Finally, the wave velocity expression is proposed with some diagnostic relations among the wave parameters.
基金This study was jointly funded by the National Natural Science Foundation of China(Grant Nos.41805041 and 41505042)the National Program on Global Change and Air-Sea Interaction(GASI-IPOVAI-03)+1 种基金the National Basis Research Program of China(2015CB953601 and 2014CB953903)the Fundamental Research Funds for the Central Universities.
文摘Variations in wave energy and amplitude for Rossby waves are investigated by solving the wave energy equation for the quasigeostrophic barotropic potential vorticity model.The results suggest that compared with rays in the nondivergent barotropic model,rays in the divergent model can have enhanced meridional and zonal propagation,accompanied by a more dramatic variability in both wave energy and amplitude,which is caused by introducing the divergence effect of the free surface in the quasigeostrophic model.For rays propagating in a region enclosed by a turning latitude and a critical latitude,the wave energy approaches the maximum value inside the region,while the amplitude approaches the maximum at the turning latitude.Waves can develop when both the wave energy and amplitude increase.For rays propagating in a region enclosed by two turning latitudes,the wave energy approaches the minimum value at one turning latitude and the maximum value at the other latitude,while the total wavenumber approaches the maximum value inside the region.The resulting amplitude increases if the total wavenumber decreases or the wave energy increases more significantly and decreases if the total wavenumber increases or the wave energy decreases more significantly.The matched roles of the energy from the basic flow and the divergence of the group velocity contribute to the slightly oscillating wave energy,which causes a slightly oscillating amplitude as well as the slightly oscillating total wavenumber.
文摘The impact of initial guess and grid resolutions on the analysis and prediction has been investigated over the Indian region. For this purpose, an univariate objective analysis scheme and a primitive equation barotropic model have been used. The impact of initial guess and the resolutions on analysis and prediction is discussed.
文摘Groins are employed to prevent nearshore areas from erosion and to control the direction of flow. However, the groin structure and its associated flow characteristics are the main causes of local erosion. In this study, we investigate the flow patterns around refractive and right-angle groins. In particular, we analytically compare the flow characteristics around a refractive groin and study the degree of accuracy that can be achieved by using a right-angle groin of various projected lengths. To compare the flow characteristics, we replaced the right-angle groin with an approximation of a refractive groin. This replacement had the least effect on the maximum velocity of flow in the channel. Moreover, we investigated the distribution of the density variables of temperature and salinity, and their effects on the flow characteristics around the right-angle groin. A comparison of the flow analysis results in baroclinic and barotropic conditions reveals that the flow characteristic values are very similar for both the refractive and right-angle groins. The geometry of the groin, i.e., right-angle or refractive, has little effect on the maximum speed to relative average speed. Apart from the angular separation, the arm length of the groin in downstream refractive groins has less effect on other flow characteristics than do upstream refractive groins. We also correlated a number of non-dimensional variables with respect to various flow characteristics and groin geometry. These comparisons indicate that the correlation between the thalweg height and width of the channel and groin arm's length to projection length have been approximated using linear and nonlinear formulas regardless of inner velocity in the subcritical flow.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11202106 and 61302188)the Specialized Research Fund for the Doctoral Program of Higher Education,China(Grant No.20123228120005)+2 种基金the Fund from the Jiangsu Sensor Network and Modern Meteorological Equipment Preponderant Discipline Platform,Chinathe Natural Science Fundation from the Universities of Jiangsu Province,China(Grant No.13KJB170016)the Advance Research Foundation in NUIST of China(Grant Nos.20110371 and 20110385)
文摘A time delay model of a two-layer barotropic ocean with Rayleigh dissipation is built. Using the improved perturba- tion method, an analytic asymptotic solution of a better approximate degree is obtained in the mid-latitude wind field, and the physical meaning of the corresponding solution is also discussed.
文摘We study the evolution of the dark energy parameter within a Bianchi type-I cosmological model filled with barotropic fluid and dark energy. The solutions have been obtained for power law and exponential forms of the expansion parameter (they correspond to a constant deceleration parameter in general relativity). After a long time, the models tend to be isotropic under certain conditions.
文摘In order to consider both the deterministic and the stochastic property of atmospheric motion simul- taneously,in this paper,the weather prediction is proposed as the problem of the evolution of meteorological field.The historical viewpoint of atmospheric motion is emphasized here.Based on time series analysis te- chnique,a stochastic-dynamical model with multiple initial fields is derived.Thus,weather forecasting is sum- meal up as a problem of solving a set of stochastic difference equations.For the barotropic atmosphere,the numerical solutions of the equations are obtained by using the method of empirical orthogonal functions (EOF),and examples of medium-range weather prediction are given here.Meanwhile,selecting the order of time series,i.e.,determining the number of initial fields properly,is also discussed.