All the possible equivalent barotropic (EB) laminar solutions are firstly explored,and all the possible non-EB elliptic circulations and hyperbolic laminar modes of rotating stratified fluids are discovered in this pa...All the possible equivalent barotropic (EB) laminar solutions are firstly explored,and all the possible non-EB elliptic circulations and hyperbolic laminar modes of rotating stratified fluids are discovered in this paper.The EB circulations (including the vortex streets and hurricane like vortices) possess rich structures,because either the arbitrary solutions of arbitrary nonlinear Poisson equations can be used or an arbitrary two-dimensional stream function is revealed which may be broadly applied in atmospheric and oceanic dynamics,plasma physics,astrophysics and so on.The discovery of the non-EB modes disproves a known conjecture.展开更多
The available data on tidal currents spanning periods greater than six months for the continental shelf of the East China Sea (26°30.052′N, 122°35.998′E) were analyzed using several methods. Tidal Current ...The available data on tidal currents spanning periods greater than six months for the continental shelf of the East China Sea (26°30.052′N, 122°35.998′E) were analyzed using several methods. Tidal Current Harmonic Analysis results demonstrated that semi-diurnal tides dominated the current movement. The tidal currents of the principal diurnal and semidiurnal rotated clockwise with depth, with the deflection of the major semi-axes to the right in the upper layer and to the left in the lower layer. The vertical structures of two principal semi-diurnal constituents-M2 and S2-were similar, which indicates that the tidal currents are mainly barotropic in this area. The main features of the variation of the four principal tidal constituents with depth demonstrate that the currents in this region are influenced by the upper and lower boundary layers. Therefore, the tidal constituents of the shallow water are similar. Different vertical modes were calculated based on the Empirical Orthogonal Function (EOF) analysis of the Eastern and Northern components of the tidal currents, with a variance contribution for the zero-order model of at least 90%. The variance contribution of the baroclinic model is minimal, which further reveals a strong barotropic character for the tidal currents of this region.展开更多
基金Project supported by the National Natural Science Foundation of China (Nos.11175092,10735030)the National Basic Research Program of China (973 Program) (No.2007CB814800)+1 种基金the Natural Science Foundation of Shanghai (No.09ZR1413600)the K.C.Wong Magna Fund of Ningbo University
文摘All the possible equivalent barotropic (EB) laminar solutions are firstly explored,and all the possible non-EB elliptic circulations and hyperbolic laminar modes of rotating stratified fluids are discovered in this paper.The EB circulations (including the vortex streets and hurricane like vortices) possess rich structures,because either the arbitrary solutions of arbitrary nonlinear Poisson equations can be used or an arbitrary two-dimensional stream function is revealed which may be broadly applied in atmospheric and oceanic dynamics,plasma physics,astrophysics and so on.The discovery of the non-EB modes disproves a known conjecture.
基金supported by the National Basic Research Program of China (2007CB411807)the National Natural Science Foundation of China (40806072,41176009)
文摘The available data on tidal currents spanning periods greater than six months for the continental shelf of the East China Sea (26°30.052′N, 122°35.998′E) were analyzed using several methods. Tidal Current Harmonic Analysis results demonstrated that semi-diurnal tides dominated the current movement. The tidal currents of the principal diurnal and semidiurnal rotated clockwise with depth, with the deflection of the major semi-axes to the right in the upper layer and to the left in the lower layer. The vertical structures of two principal semi-diurnal constituents-M2 and S2-were similar, which indicates that the tidal currents are mainly barotropic in this area. The main features of the variation of the four principal tidal constituents with depth demonstrate that the currents in this region are influenced by the upper and lower boundary layers. Therefore, the tidal constituents of the shallow water are similar. Different vertical modes were calculated based on the Empirical Orthogonal Function (EOF) analysis of the Eastern and Northern components of the tidal currents, with a variance contribution for the zero-order model of at least 90%. The variance contribution of the baroclinic model is minimal, which further reveals a strong barotropic character for the tidal currents of this region.