A new analytical model to describe the drain-induced barrier lowering (DIBL) effect has been obtained by solving the two-dimensional (2D) Poisson's equation for the dual-channel 4H-SiC MESFET (DCFET). Using thi...A new analytical model to describe the drain-induced barrier lowering (DIBL) effect has been obtained by solving the two-dimensional (2D) Poisson's equation for the dual-channel 4H-SiC MESFET (DCFET). Using this analytical model, we calculate the threshold voltage shift and the sub-threshold slope factor of the DCFET, which characterize the DIBL effect. The results show that they are significantly dependent on the drain bias, gate length as well as the thickness and doping concentration of the two channel layers. Based on this analytical model, the structure parameters of the DCFET have been optimized in order to suppress the DIBL effect and improve the performance.展开更多
Total ionizing dose responses of different transistor geometries after being irradiated by ^(60)Co γ-rays, in 0.13-μm partially-depleted silicon-on-insulator(PD SOI) technology are investigated. The negative thr...Total ionizing dose responses of different transistor geometries after being irradiated by ^(60)Co γ-rays, in 0.13-μm partially-depleted silicon-on-insulator(PD SOI) technology are investigated. The negative threshold voltage shift in an n-type metal-oxide semiconductor field effect transistor(nMOSFET) is inversely proportional to the channel width due to radiation-induced charges trapped in trench oxide, which is called the radiation-induced narrow channel effect(RINCE).The analysis based on a charge sharing model and three-dimensional technology computer aided design(TCAD) simulations demonstrate that phenomenon. The radiation-induced leakage currents under different drain biases are also discussed in detail.展开更多
A new analytical model to describe the drain-induced barrier lowering(DIBL) effect has been obtained by solving the two-dimensional(2D) Poisson’s equation for the dual-channel 4H-SiC MESFET(DCFET).Using this analytic...A new analytical model to describe the drain-induced barrier lowering(DIBL) effect has been obtained by solving the two-dimensional(2D) Poisson’s equation for the dual-channel 4H-SiC MESFET(DCFET).Using this analytical model,we calculate the threshold voltage shift and the sub-threshold slope factor of the DCFET,which characterize the DIBL effect.The results show that they are significantly dependent on the drain bias,gate length as well as the thickness and doping concentration of the two channel layers.Based on this analytical model,the structure parameters of the DCFET have been optimized in order to suppress the DIBL effect and improve the performance.展开更多
In order to reduce or eliminate the adverse effects of calcium impurity,the interaction of Ca and rare earth Y co-doping on the preparation of WC-Co cemented carbides was investigated.X-ray diffraction,scanning electr...In order to reduce or eliminate the adverse effects of calcium impurity,the interaction of Ca and rare earth Y co-doping on the preparation of WC-Co cemented carbides was investigated.X-ray diffraction,scanning electron microscopy and transmission electron microscopy were employed to analyze the phase compositions,particle sizes and morphologies of them,respectively.The results show that the second type of"yttrium barrier effect"is observed and the adverse influence of Ca-rich phase on tungsten powder can be eliminated by it.The flexural strength and fracture toughness of YG6-0.01%Ca+0.09%Y alloy are 2199.5 MPa and 11.49 MPa·m^(1/2),showing improvement of 6.5% and 2.7% compared to YG6 alloy,respectively.The evolutions of Ca-rich phase and Y-rich phase at the every alloy preparation stage of WO_(3),W,WC and cemented carbides are obtained.Furthermore,the strengthening mechanism of WC-Co cemented carbide with co-addition of Ca and Y is proposed.展开更多
We present novel Schottky barrier field effect transistors consisting of a parallel array of bottom-up grown silicon nanowires that are able to deliver high current outputs. Axial silicidation of the nanowires is used...We present novel Schottky barrier field effect transistors consisting of a parallel array of bottom-up grown silicon nanowires that are able to deliver high current outputs. Axial silicidation of the nanowires is used to create defined Schottky junctions leading to on/off current ratios of up to 106. The device concept leverages the unique transport properties of nanoscale junctions to boost device performance for macroscopic applications. Using parallel arrays, on-currents of over 500 gA at a source-drain voltage of 0.5 V can be achieved. The transconductance is thus increased significantly while maintaining the transfer characteristics of single nanowire devices. By incorporating several hundred nanowires into the parallel arra36 the yield of functioning transistors is dramatically increased and device- to-device variability is reduced compared to single devices. This new nanowire- based platform provides sufficient current output to be employed as a transducer for biosensors or a driving stage for organic light-emitting diodes (LEDs), while the bottom-up nature of the fabrication procedure means it can provide building blocks for novel printable electronic devices.展开更多
Using data from nine microsatellite DNA loci and a population genetic approach,we evaluate the barrier effect of the Qinghai-Tibet Railway on toad-headed lizard,Phrynocephalus vlangalii. The study area is along a 20 k...Using data from nine microsatellite DNA loci and a population genetic approach,we evaluate the barrier effect of the Qinghai-Tibet Railway on toad-headed lizard,Phrynocephalus vlangalii. The study area is along a 20 km stretch of the railway on northern Qinghai-Tibet Plateau,and this section of the railway was constructed between 1958–1979. Both assignment tests and analysis of molecular variance(AMOVA) were used for data analysis. We found significant genetic differentiation between the populations from the study area and those from a further southeastern area,which are separated by a 20 km gap. This suggests the existence of population substructure at a fine-scale. However,we did not detect any difference between samples from the western and eastern sides of the railway within the study area,and concluded that the railway may not impose a significant barrier effect on these lizard populations at the present time. Available suitable habitat alongside the railway and bridge underpasses may have facilitated the gene exchange between the sides. The relatively short time since the completion of the railway may not allow the differentiation to accumulate to a detectable level. Since the Qinghai-Tibet Plateau maintains a unique and fragile ecosystem,long-term monitoring of such man-made landscape features is imperative for protecting this ecosystem.展开更多
A gate-to-body tunneling current model for silicon-on-insulator (SOl) devices is simulated. As verified by the mea- sured data, the model, considering both gate voltage and drain voltage dependence as well as image ...A gate-to-body tunneling current model for silicon-on-insulator (SOl) devices is simulated. As verified by the mea- sured data, the model, considering both gate voltage and drain voltage dependence as well as image force-induced barrier low effect, provides a better prediction of the tunneling current and gate-induced floating body effect than the BSIMSOI4 model. A delayed gate-induced floating body effect is also predicted by the model.展开更多
The interaction radius of a resonance is an important physical quantity to describe the structure of a resonance. But, for a long time, physicists do not find a reliable way to measure the magnitude of the interaction...The interaction radius of a resonance is an important physical quantity to describe the structure of a resonance. But, for a long time, physicists do not find a reliable way to measure the magnitude of the interaction radius of a resonance. In this paper, a method is proposed to measure the interaction radius in physics analysis. It is found that the centrifugal barrier effects have great influence to physical results obtained in the PWA fit, and the interaction radius of some resonances can be well measured in the fit.展开更多
The hollow inverse CeO2/CuO@SiO2 catalysts with different Ce/Cu mass ratios were synthesized by the two-step hydrothermal and incipient wetness impregnation methods,and characterized by multitechnique characterization...The hollow inverse CeO2/CuO@SiO2 catalysts with different Ce/Cu mass ratios were synthesized by the two-step hydrothermal and incipient wetness impregnation methods,and characterized by multitechnique characterizations,such as SEM,TEM,XRD,H2-TPR,XPS and N2 adsorption-desorption techniques.It is found that the hollow shell is composed of CuO and SiO2,and CeO2 nanoparticles are coated on the surface of CuO@SiO2 support.And the CeO2/CuO@SiO2 catalyst with the Ce/Cu mass ratios of 1:1 denoted as 1 CeO2/CuO@SiO2,which possesses a maximum amount of highly dispersed copper species and medium-sized CuO as well as the highest concentration of oxygen vacancies,exhibits the highest catalytic activity and widest full CO conversion window.The barrier effect of the SiO2 shell effectively prevents the reduction of CuO species,which broadens temperature window of CO total conversion and enhances CO2 selectivity above 155℃over the 1 CeO2/CuO@SiO2 catalyst in comparison with the CuO-CeO2 and CeO2-CuO catalysts.展开更多
The influences of the main structure and physical parameters of the dual-gate GeOl MOSFET on the device performance are investigated by using a TCAD 2D device simulator. A reasonable value range of germanium (Ge) ch...The influences of the main structure and physical parameters of the dual-gate GeOl MOSFET on the device performance are investigated by using a TCAD 2D device simulator. A reasonable value range of germanium (Ge) channel thickness, doping concentration, gate oxide thickness and permittivity is determined by analyzing the on-state current, off-state current, short channel effect (SCE) and drain-induced barrier lowering (DIBL) effect of the GeOI MOSFET. When the channel thickness and its doping concentration are 10-18 nm and (5-9)×1017 cm-3, and the equivalent oxide thickness and permittivity of the gate dielectric are 0.8-1 nm and 15-30, respectively, excellent device performances of the small-scaled GeOI MOSFET can be achieved: on-state current of larger than 1475 μA/μm, off-state current of smaller than 0.1μA/μm, SCE-induced threshold-voltage drift of lower than 60 mV and DIBL-induced threshold-voltage drift of lower than 140 mV.展开更多
By means of analyzing theⅠ-Ⅴcharacteristic curve of NiSi/n-Si Schottkyjunction diodes(NiSi/n-Si SJDs), abstracting the effective Schottky barrier height(φ_(B,eff)) and the idealfactor ofNiSi/n-Si SJDs and mea...By means of analyzing theⅠ-Ⅴcharacteristic curve of NiSi/n-Si Schottkyjunction diodes(NiSi/n-Si SJDs), abstracting the effective Schottky barrier height(φ_(B,eff)) and the idealfactor ofNiSi/n-Si SJDs and measuring the sheet resistance of NiSi films(R_(NiSi)),we study the effects of different dopant segregation process parameters,including impurity implantation dose,segregation annealing temperature and segregation annealing time,on theφ_(B,eff) of NiSi/ n-Si SJDs and the resistance characteristic of NiSi films.In addition,the changing rules ofφ_(B,eff) and R_(NiSi) are discussed.展开更多
基金Project supported by the Pre-research Foundation from the National Ministries and Commissions of China (Grant No. 51308030201).
文摘A new analytical model to describe the drain-induced barrier lowering (DIBL) effect has been obtained by solving the two-dimensional (2D) Poisson's equation for the dual-channel 4H-SiC MESFET (DCFET). Using this analytical model, we calculate the threshold voltage shift and the sub-threshold slope factor of the DCFET, which characterize the DIBL effect. The results show that they are significantly dependent on the drain bias, gate length as well as the thickness and doping concentration of the two channel layers. Based on this analytical model, the structure parameters of the DCFET have been optimized in order to suppress the DIBL effect and improve the performance.
基金Project supported by the Weapon Equipment Pre-Research Foundation of China(Grant No.9140A11020114ZK34147)the Shanghai Municipal Natural Science Foundation,China(Grant No.15ZR1447100)
文摘Total ionizing dose responses of different transistor geometries after being irradiated by ^(60)Co γ-rays, in 0.13-μm partially-depleted silicon-on-insulator(PD SOI) technology are investigated. The negative threshold voltage shift in an n-type metal-oxide semiconductor field effect transistor(nMOSFET) is inversely proportional to the channel width due to radiation-induced charges trapped in trench oxide, which is called the radiation-induced narrow channel effect(RINCE).The analysis based on a charge sharing model and three-dimensional technology computer aided design(TCAD) simulations demonstrate that phenomenon. The radiation-induced leakage currents under different drain biases are also discussed in detail.
基金Project supported by the Pre-research Foundation from the National Ministries and Commissions of China (Grant No. 51308030201)
文摘A new analytical model to describe the drain-induced barrier lowering(DIBL) effect has been obtained by solving the two-dimensional(2D) Poisson’s equation for the dual-channel 4H-SiC MESFET(DCFET).Using this analytical model,we calculate the threshold voltage shift and the sub-threshold slope factor of the DCFET,which characterize the DIBL effect.The results show that they are significantly dependent on the drain bias,gate length as well as the thickness and doping concentration of the two channel layers.Based on this analytical model,the structure parameters of the DCFET have been optimized in order to suppress the DIBL effect and improve the performance.
基金Project supported by the National Natural Science Foundation of China(51564036,52164043)the Natural Science Foundation of Jiangxi Province(2002BAB204013)the Key Research and Development Program of Science and Technology Deprtment of Jiangxi Province(20192BBE50034)。
文摘In order to reduce or eliminate the adverse effects of calcium impurity,the interaction of Ca and rare earth Y co-doping on the preparation of WC-Co cemented carbides was investigated.X-ray diffraction,scanning electron microscopy and transmission electron microscopy were employed to analyze the phase compositions,particle sizes and morphologies of them,respectively.The results show that the second type of"yttrium barrier effect"is observed and the adverse influence of Ca-rich phase on tungsten powder can be eliminated by it.The flexural strength and fracture toughness of YG6-0.01%Ca+0.09%Y alloy are 2199.5 MPa and 11.49 MPa·m^(1/2),showing improvement of 6.5% and 2.7% compared to YG6 alloy,respectively.The evolutions of Ca-rich phase and Y-rich phase at the every alloy preparation stage of WO_(3),W,WC and cemented carbides are obtained.Furthermore,the strengthening mechanism of WC-Co cemented carbide with co-addition of Ca and Y is proposed.
文摘We present novel Schottky barrier field effect transistors consisting of a parallel array of bottom-up grown silicon nanowires that are able to deliver high current outputs. Axial silicidation of the nanowires is used to create defined Schottky junctions leading to on/off current ratios of up to 106. The device concept leverages the unique transport properties of nanoscale junctions to boost device performance for macroscopic applications. Using parallel arrays, on-currents of over 500 gA at a source-drain voltage of 0.5 V can be achieved. The transconductance is thus increased significantly while maintaining the transfer characteristics of single nanowire devices. By incorporating several hundred nanowires into the parallel arra36 the yield of functioning transistors is dramatically increased and device- to-device variability is reduced compared to single devices. This new nanowire- based platform provides sufficient current output to be employed as a transducer for biosensors or a driving stage for organic light-emitting diodes (LEDs), while the bottom-up nature of the fabrication procedure means it can provide building blocks for novel printable electronic devices.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Y1C2021203, Y0S3011)the Talent Reward Grant (Y1D3011) from Sichuan Provincial Government, China the NSERC (Canada) discovery grant to Jinzhong FU
文摘Using data from nine microsatellite DNA loci and a population genetic approach,we evaluate the barrier effect of the Qinghai-Tibet Railway on toad-headed lizard,Phrynocephalus vlangalii. The study area is along a 20 km stretch of the railway on northern Qinghai-Tibet Plateau,and this section of the railway was constructed between 1958–1979. Both assignment tests and analysis of molecular variance(AMOVA) were used for data analysis. We found significant genetic differentiation between the populations from the study area and those from a further southeastern area,which are separated by a 20 km gap. This suggests the existence of population substructure at a fine-scale. However,we did not detect any difference between samples from the western and eastern sides of the railway within the study area,and concluded that the railway may not impose a significant barrier effect on these lizard populations at the present time. Available suitable habitat alongside the railway and bridge underpasses may have facilitated the gene exchange between the sides. The relatively short time since the completion of the railway may not allow the differentiation to accumulate to a detectable level. Since the Qinghai-Tibet Plateau maintains a unique and fragile ecosystem,long-term monitoring of such man-made landscape features is imperative for protecting this ecosystem.
文摘A gate-to-body tunneling current model for silicon-on-insulator (SOl) devices is simulated. As verified by the mea- sured data, the model, considering both gate voltage and drain voltage dependence as well as image force-induced barrier low effect, provides a better prediction of the tunneling current and gate-induced floating body effect than the BSIMSOI4 model. A delayed gate-induced floating body effect is also predicted by the model.
文摘The interaction radius of a resonance is an important physical quantity to describe the structure of a resonance. But, for a long time, physicists do not find a reliable way to measure the magnitude of the interaction radius of a resonance. In this paper, a method is proposed to measure the interaction radius in physics analysis. It is found that the centrifugal barrier effects have great influence to physical results obtained in the PWA fit, and the interaction radius of some resonances can be well measured in the fit.
基金Project supported by the National Natural Science Foundation of China(21466024)the Natural Science Foundation of Inner Mongolia(2018MS02020,2018BS02008)
文摘The hollow inverse CeO2/CuO@SiO2 catalysts with different Ce/Cu mass ratios were synthesized by the two-step hydrothermal and incipient wetness impregnation methods,and characterized by multitechnique characterizations,such as SEM,TEM,XRD,H2-TPR,XPS and N2 adsorption-desorption techniques.It is found that the hollow shell is composed of CuO and SiO2,and CeO2 nanoparticles are coated on the surface of CuO@SiO2 support.And the CeO2/CuO@SiO2 catalyst with the Ce/Cu mass ratios of 1:1 denoted as 1 CeO2/CuO@SiO2,which possesses a maximum amount of highly dispersed copper species and medium-sized CuO as well as the highest concentration of oxygen vacancies,exhibits the highest catalytic activity and widest full CO conversion window.The barrier effect of the SiO2 shell effectively prevents the reduction of CuO species,which broadens temperature window of CO total conversion and enhances CO2 selectivity above 155℃over the 1 CeO2/CuO@SiO2 catalyst in comparison with the CuO-CeO2 and CeO2-CuO catalysts.
基金Project supported by the National Natural Science Foundation of China(No.61274112)
文摘The influences of the main structure and physical parameters of the dual-gate GeOl MOSFET on the device performance are investigated by using a TCAD 2D device simulator. A reasonable value range of germanium (Ge) channel thickness, doping concentration, gate oxide thickness and permittivity is determined by analyzing the on-state current, off-state current, short channel effect (SCE) and drain-induced barrier lowering (DIBL) effect of the GeOI MOSFET. When the channel thickness and its doping concentration are 10-18 nm and (5-9)×1017 cm-3, and the equivalent oxide thickness and permittivity of the gate dielectric are 0.8-1 nm and 15-30, respectively, excellent device performances of the small-scaled GeOI MOSFET can be achieved: on-state current of larger than 1475 μA/μm, off-state current of smaller than 0.1μA/μm, SCE-induced threshold-voltage drift of lower than 60 mV and DIBL-induced threshold-voltage drift of lower than 140 mV.
文摘By means of analyzing theⅠ-Ⅴcharacteristic curve of NiSi/n-Si Schottkyjunction diodes(NiSi/n-Si SJDs), abstracting the effective Schottky barrier height(φ_(B,eff)) and the idealfactor ofNiSi/n-Si SJDs and measuring the sheet resistance of NiSi films(R_(NiSi)),we study the effects of different dopant segregation process parameters,including impurity implantation dose,segregation annealing temperature and segregation annealing time,on theφ_(B,eff) of NiSi/ n-Si SJDs and the resistance characteristic of NiSi films.In addition,the changing rules ofφ_(B,eff) and R_(NiSi) are discussed.