Single cell trapping in vitro by microfluidic device is an emerging approach for the study of the relationship between single cells and their dynamic biochemical microenvironments. In this paper, a hydrodynamic-based ...Single cell trapping in vitro by microfluidic device is an emerging approach for the study of the relationship between single cells and their dynamic biochemical microenvironments. In this paper, a hydrodynamic-based microfluidic device for single cell trapping is designed using a combination of stagnation point flow and physical barrier.The microfluidic device overcomes the weakness of the traditional ones, which have been only based upon either stagnation point flows or physical barriers, and can conveniently load dynamic biochemical signals to the trapped cell. In addition, it can connect with a programmable syringe pump and a microscope to constitute an integrated experimental system.It is experimentally verified that the microfluidic system can trap single cells in vitro even under flow disturbance and conveniently load biochemical signals to the trapped cell. The designed micro-device would provide a simple yet effective experimental platform for further study of the interactions between single cells and their microenvironments.展开更多
The paper discusses the characteristics of next generation services, and analyzes its development barriers and cut-in points.Broadband services that NGN offers have to transit from an unknown state to an popular state...The paper discusses the characteristics of next generation services, and analyzes its development barriers and cut-in points.Broadband services that NGN offers have to transit from an unknown state to an popular state to become a scale economy.Personal information and communication services and multimedia entertainment services will be the cut-in points.展开更多
The choice of self-concordant functions is the key to efficient algorithms for linear and quadratic convex optimizations, which provide a method with polynomial-time iterations to solve linear and quadratic convex opt...The choice of self-concordant functions is the key to efficient algorithms for linear and quadratic convex optimizations, which provide a method with polynomial-time iterations to solve linear and quadratic convex optimization problems. The parameters of a self-concordant barrier function can be used to compute the complexity bound of the proposed algorithm. In this paper, it is proved that the finite barrier function is a local self-concordant barrier function. By deriving the local values of parameters of this barrier function, the desired complexity bound of an interior-point algorithm based on this local self-concordant function for linear optimization problem is obtained. The bound matches the best known bound for small-update methods.展开更多
We derived revised effective diffusion energy barriers following the Boltzmann distribution assumption for impurity atoms in a bulk material under the impact of various kinds of point defects to reveal the insights of...We derived revised effective diffusion energy barriers following the Boltzmann distribution assumption for impurity atoms in a bulk material under the impact of various kinds of point defects to reveal the insights of migration mechanisms. The effective diffusion energy barriers of copper impurities in bulk zirconium were calculated through the first principle method under the presented hypothesis. Our results(?E_(||) =1.27 eV, ?E_⊥=1.31 eV) agreed well with the experimental results(?E_(||) =1.54 eV, ?E_⊥=1.60 eV), which validated bulk diffusion as the major mechanism for copper diffusion in zirconium. The effective diffusion energy barriers could be used for estimating whether the defects will accelerate the diffusion or slow them down by acting as traps of the impurity atoms. On the other hand, the first principle results of the impurity diffusion via defects could be further used as inputs of larger scale computational simulations, such as MC(Monte Carlo) or Phase Field calculations.展开更多
Determining the interfacial properties of thermal barrier coatings(TBCs) is imperative for their durability evaluation and further improvements. A ceramic coating(topcoat) and a NiCoCrALY bondcoat were atmospheric-pla...Determining the interfacial properties of thermal barrier coatings(TBCs) is imperative for their durability evaluation and further improvements. A ceramic coating(topcoat) and a NiCoCrALY bondcoat were atmospheric-plasma-sprayed(APS) on a stainless steel substrate. A modified three-point bending test was adopted to initiate and propagate the topcoat/bondcoat(TC/BC)interfacial crack. After a complete delamination, the fracture surfaces were examined by an optical microscope, which shows that the cracking plane was merely on the TC/BC interface. Based on the experimental results of load–displacement and crack length–displacement,the strain energy release rate G for crack propagation was calculated, and the averaged magnitude was 77.1 J/m^2.Repeatable results have indicated that the method can be used for the evaluation of interfacial fracture toughness in thermal barrier coatings and other multi-layer structures.展开更多
A penalized interior point approach for constrained nonlinear programming is examined in this work. To overcome the difficulty of initialization for the interior point method, a problem equivalent to the primal proble...A penalized interior point approach for constrained nonlinear programming is examined in this work. To overcome the difficulty of initialization for the interior point method, a problem equivalent to the primal problem via incorporating an auxiliary variable is constructed. A combined approach of logarithm barrier and quadratic penalty function is proposed to solve the problem. Based on Newton's method, the global convergence of interior point and line search algorithm is proven. Only a finite number of iterations is required to reach an approximate optimal solution. Numerical tests are given to show the effectiveness of the method.展开更多
To reveal the potential aging mechanism for self-irradiation in Pu-Ga alloy,we choose Au-Ag alloy as its substitutional material in terms of its mass density and lattice structure.As a first step for understanding the...To reveal the potential aging mechanism for self-irradiation in Pu-Ga alloy,we choose Au-Ag alloy as its substitutional material in terms of its mass density and lattice structure.As a first step for understanding the microscopic behavior of point defects in Au-Ag alloy,we perform a molecular dynamics(MD)simulation on energetics and diffusion of point defects in Au and Ag metal.Our results indicate that the octahedral self-interstitial atom(SIA)is more stable than the tetrahedral SIA.The stability sequence of point defects for He atom in Au/Ag is:substitutional site>octahedral interstitial site>tetrahedral interstitial site.The He-V cluster(Hen Vm,V denotes vacancy)is the most stable at n=m.For the mono-vacancy diffusion,the MD calculation shows that the first nearest neighbour(1 NN)site is the most favorable site on the basis of the nudged elastic band(NEB)calculation,which is in agreement with previous experimental data.There are two peaks for the second nearest neighbour(2 NN)and the third nearest neighbour(3 NN)diffusion curve in octahedral interstitial site for He atom,indicating that the 2 NN and 3 NN diffusion for octahedral SIA would undergo an intermediate defect structure similar to the 1 NN site.The 3 NN diffusion for the tetrahedral SIA and He atom would undergo an intermediate site in analogy to its initial structure.For diffusion of point defects,the vacancy,SIA,He atom and He-V cluster may have an analogous effect on the diffusion velocity in Ag.展开更多
基金supported by the National Natural Science Foundation of China (Grants 11172060 and 31370948)
文摘Single cell trapping in vitro by microfluidic device is an emerging approach for the study of the relationship between single cells and their dynamic biochemical microenvironments. In this paper, a hydrodynamic-based microfluidic device for single cell trapping is designed using a combination of stagnation point flow and physical barrier.The microfluidic device overcomes the weakness of the traditional ones, which have been only based upon either stagnation point flows or physical barriers, and can conveniently load dynamic biochemical signals to the trapped cell. In addition, it can connect with a programmable syringe pump and a microscope to constitute an integrated experimental system.It is experimentally verified that the microfluidic system can trap single cells in vitro even under flow disturbance and conveniently load biochemical signals to the trapped cell. The designed micro-device would provide a simple yet effective experimental platform for further study of the interactions between single cells and their microenvironments.
文摘The paper discusses the characteristics of next generation services, and analyzes its development barriers and cut-in points.Broadband services that NGN offers have to transit from an unknown state to an popular state to become a scale economy.Personal information and communication services and multimedia entertainment services will be the cut-in points.
基金supported by the National Natural Science Foundation of China (Grant No.10771133)the Shanghai Leading Academic Discipline Project (Grant No.S30101)the Research Foundation for the Doctoral Program of Higher Education (Grant No.200802800010)
文摘The choice of self-concordant functions is the key to efficient algorithms for linear and quadratic convex optimizations, which provide a method with polynomial-time iterations to solve linear and quadratic convex optimization problems. The parameters of a self-concordant barrier function can be used to compute the complexity bound of the proposed algorithm. In this paper, it is proved that the finite barrier function is a local self-concordant barrier function. By deriving the local values of parameters of this barrier function, the desired complexity bound of an interior-point algorithm based on this local self-concordant function for linear optimization problem is obtained. The bound matches the best known bound for small-update methods.
基金Funded in Part by National Natural Science Foundation of China(Nos.11575129 and 11275142)
文摘We derived revised effective diffusion energy barriers following the Boltzmann distribution assumption for impurity atoms in a bulk material under the impact of various kinds of point defects to reveal the insights of migration mechanisms. The effective diffusion energy barriers of copper impurities in bulk zirconium were calculated through the first principle method under the presented hypothesis. Our results(?E_(||) =1.27 eV, ?E_⊥=1.31 eV) agreed well with the experimental results(?E_(||) =1.54 eV, ?E_⊥=1.60 eV), which validated bulk diffusion as the major mechanism for copper diffusion in zirconium. The effective diffusion energy barriers could be used for estimating whether the defects will accelerate the diffusion or slow them down by acting as traps of the impurity atoms. On the other hand, the first principle results of the impurity diffusion via defects could be further used as inputs of larger scale computational simulations, such as MC(Monte Carlo) or Phase Field calculations.
基金financial support from the National Natural Science Foundation of China(11232008,11372118,and 11672345)the Natural Science Foundation of Jiangsu Province(BK20161341)the Six Talent Peaks Project in Jiangsu Province(2016-HKHT-004)
文摘Determining the interfacial properties of thermal barrier coatings(TBCs) is imperative for their durability evaluation and further improvements. A ceramic coating(topcoat) and a NiCoCrALY bondcoat were atmospheric-plasma-sprayed(APS) on a stainless steel substrate. A modified three-point bending test was adopted to initiate and propagate the topcoat/bondcoat(TC/BC)interfacial crack. After a complete delamination, the fracture surfaces were examined by an optical microscope, which shows that the cracking plane was merely on the TC/BC interface. Based on the experimental results of load–displacement and crack length–displacement,the strain energy release rate G for crack propagation was calculated, and the averaged magnitude was 77.1 J/m^2.Repeatable results have indicated that the method can be used for the evaluation of interfacial fracture toughness in thermal barrier coatings and other multi-layer structures.
基金supported by the National Natural Science Foundation of China (Grant No.10771133)the Shanghai Leading Academic Discipline Project (Grant Nos.J50101, S30104)
文摘A penalized interior point approach for constrained nonlinear programming is examined in this work. To overcome the difficulty of initialization for the interior point method, a problem equivalent to the primal problem via incorporating an auxiliary variable is constructed. A combined approach of logarithm barrier and quadratic penalty function is proposed to solve the problem. Based on Newton's method, the global convergence of interior point and line search algorithm is proven. Only a finite number of iterations is required to reach an approximate optimal solution. Numerical tests are given to show the effectiveness of the method.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51401237,11474358,and 51271198)the Fund from Shaanxi Provincial Education Department,China(Grant No.18JK1207)the Defence Technology Foundation of China(Grant No.2301003)
文摘To reveal the potential aging mechanism for self-irradiation in Pu-Ga alloy,we choose Au-Ag alloy as its substitutional material in terms of its mass density and lattice structure.As a first step for understanding the microscopic behavior of point defects in Au-Ag alloy,we perform a molecular dynamics(MD)simulation on energetics and diffusion of point defects in Au and Ag metal.Our results indicate that the octahedral self-interstitial atom(SIA)is more stable than the tetrahedral SIA.The stability sequence of point defects for He atom in Au/Ag is:substitutional site>octahedral interstitial site>tetrahedral interstitial site.The He-V cluster(Hen Vm,V denotes vacancy)is the most stable at n=m.For the mono-vacancy diffusion,the MD calculation shows that the first nearest neighbour(1 NN)site is the most favorable site on the basis of the nudged elastic band(NEB)calculation,which is in agreement with previous experimental data.There are two peaks for the second nearest neighbour(2 NN)and the third nearest neighbour(3 NN)diffusion curve in octahedral interstitial site for He atom,indicating that the 2 NN and 3 NN diffusion for octahedral SIA would undergo an intermediate defect structure similar to the 1 NN site.The 3 NN diffusion for the tetrahedral SIA and He atom would undergo an intermediate site in analogy to its initial structure.For diffusion of point defects,the vacancy,SIA,He atom and He-V cluster may have an analogous effect on the diffusion velocity in Ag.