Glued timber structure is one of the main forms of modern wood architecture,which has gradually developed towards mid-and high-rise buildings.Glue-laminated timber(GLT)is comprised of several laminates of parallel-to-...Glued timber structure is one of the main forms of modern wood architecture,which has gradually developed towards mid-and high-rise buildings.Glue-laminated timber(GLT)is comprised of several laminates of parallel-to-grain dimension lumber that are bonded together with durable,moisture resistant structural adhesives.GLT can be used in horizontal applications as a beam and in vertical applications as a post.So,its compressive performance has a significant impact on structural safety.Fiber reinforced polymers(FRPs)were commonly used to improve the bearing capacity of GLT components,and the structural and process parameters largely determined the reinforcement effect.This study was aimed at investigating the influence of structural and process parameters on the axial compression performance of GLT components.Three wrapping methods(middle-part,end-part and full wrapping)and three lengths(0.6,0.8,and 1.0 m)of wood post specimens were designed in this work and the axial compression performance and ductility of GLT post specimens modified by basalt fiber reinforced polymer(BFRP)were studied.The results showed that the effect of different BFRP wrapping methods on the compressive strength and elastic modulus of laminated wood was not statistically significant(P>0.05).The compressive bearing capacity of unreinforced GLT posts decreased with the increase of aspect ratio.The GLT posts with middle-part and end-part wrapping still followed this pattern,while the compressive bearing capacity of GLT posts with full wrapping showed a pattern of first decreasing and then increasing.For GLT with low aspect ratios(4.0 or 5.3),there was no correlation between the wrapping method and the compressive bearing capacity,while the compressive bearing capacity of GLT with a high aspect ratio(6.7)for middle-part,end-part and full wrapping increased by 3.5%,7.5%and 9.7%,respectively.Compared to the unreinforced group,the ultimate axial compressive strength and modulus of elasticity(MOE)of the 6-E series specimens reinforced at both ends decreased by 2.58%and 6.70%,respectively.The ultimate axial compressive strength of the 8-E specimens reinforced at both ends increased by 8.62%and the MOE decreased by 1.91%.The compressive strength of the 10-E specimens reinforced at both ends increased by 7.51%and the MOE increased by 8.14%.The failure modes of GLT with different aspects were consistent under the same BFRP wrapping,while the failure modes of GLT with the same aspect ratio were different for different BFRP wrapping methods.The ductility performance of GLT with different aspects ratio was improved by the BFRP wrapping.展开更多
Continuous basalt fiber(CBF)is an outstanding inorganic fiber produced from nature,which has a wide range of applications in the field of armor protection of national defense military.However,the mechanical response a...Continuous basalt fiber(CBF)is an outstanding inorganic fiber produced from nature,which has a wide range of applications in the field of armor protection of national defense military.However,the mechanical response and failure mechanism of 3D printed CBF reinforced components are still not well understood.Here,the 3D printing thermoplastic composites with high volume fraction CBF have been successfully prepared by fused deposition modelling(FDM)method.The effects of fiber printing direction and polymer matrix type on the tensile and flexural properties of the 3D printed composites have been explored,and the detailed failure morphology has been characterized using scanning electron microscopy and optical microscopy.It was found that under high fiber volume fraction,3D printed CBF reinforced polyamides(PA)composites have the best ability to maintain material integrity of the composites,followed by acrylonitrile butadiene styrene(ABS)and high impact polystyrene(HIPS).Besides,the results from rule of mixtures can accurately predict the longitudinal Young’s modulus of the 3D printed specimens,but there exists a large discrepancy for the prediction of the tensile strength.The microstructure analysis shows that the failure modes of 3D printed composites mainly include fiber debonding,fiber pull-out,stress whitening and matrix cracking.展开更多
The development of recycled aggregate concrete(RAC)provides a new approach to limiting the waste of natural resources.In the present study,the mechanical properties and deformability of RACs were improved by adding ba...The development of recycled aggregate concrete(RAC)provides a new approach to limiting the waste of natural resources.In the present study,the mechanical properties and deformability of RACs were improved by adding basalt fibers(BFs)and using external restraints,such as a fiber-reinforced polymer(FRP)jacket or a PVC pipe.Samples were tested under axial compression.The results showed that RAC(50%replacement of aggregate)containing 0.2%BFs had the best mechanical properties.Using either BFs or PVC reinforcement had a slight effect on the loadbearing capacity and mode of failure.With different levels of BFs,the compressive strengths of the specimens reinforced with 1-layer and 3-layer basalt fiber reinforced polymer(BFRP)increased by 6.7%–10.5%and 16.5%–23.7%,respectively,and the ultimate strains increased by 48.5%–80.7%and 97.1%–141.1%,respectively.The peak stress of the 3-layer BFRP-PVC increased by 42.2%,and the ultimate strain improved by 131.3%,relative to the control.This reinforcement combined the high tensile strength of BFRP,which improved the post-peak behavior,and PVC,which enhanced the structural durability.In addition,to investigate the influence of the various constraints on compressive behavior,the stress-strain response was analyzed.Based on the analysis of experimental results,a peak stress-strain model and an amended ultimate stress-strain model were proposed.The models were verified as well;the result showed that the predictions from calculations are generally consistent with the experimental data(error within 10%).The results of this study provide a theoretical basis and reference for future applications of fiber-reinforced recycled concrete.展开更多
To enhance the sulfate attack resistance performance of concrete,Sulfate erosion test was carried out on basalt fiber concrete with different contents,selecting a concentration of 5%sulfate solution and using a dry−we...To enhance the sulfate attack resistance performance of concrete,Sulfate erosion test was carried out on basalt fiber concrete with different contents,selecting a concentration of 5%sulfate solution and using a dry−wet cycle mechanism attack of basalt fiber-reinforced concrete(BFRC).Every 15 dry−wet cycles,the mass,compressive strength,splitting tensile strength,and relative dynamic elastic modulus of BFRC were tested,and the SO_(4)^(2−)con-centration was measured.This work demonstrates that the mass,relative dynamic elastic modulus,compressive and splitting tensile strength of BFRC reveal a trend of climb up and then decline with the process of the dry−wet cycle.Basalt fiber can enhance the sulfate corrosion resistance of concrete by delaying the erosion of concrete induced by SO_(4)^(2−)and increasing the bearing and anti-deformation capacities of concrete by improving its inter-nal structure.Additionally,when mixing 0.2%basalt fiber into concrete,the strength deterioration rate will be reduced when the peak values of splitting tensile and compressive strength appear at 60 and 75 times the alter-nating dry−wet cycles,respectively.Adverse effects will occur when the fiber volume fraction exceeds 0.2%.The research in this paper can provide a foundation for the engineering applications of basalt fiber concrete.展开更多
The woven basalt fiber composites(WBFC) and the unidirectional [0°/90°/45°/-45°]s basalt fiber composites(UBFC) were prepared by hot-pressing.Three-point bending test,low velocity impact test,and b...The woven basalt fiber composites(WBFC) and the unidirectional [0°/90°/45°/-45°]s basalt fiber composites(UBFC) were prepared by hot-pressing.Three-point bending test,low velocity impact test,and ballistic test were performed to the prepared composites.After the tests,the specimens were recovered and analyzed for micromorphology.Three-point bending tests show that both the bending strength and stiffness of the WBFC surpass those of the UBFC.Low velocity impact test results show that the low velocity impact resistance to hemispherical impactor of the UBFC is higher than that of the WBFC,but the low velocity impact resistance to sharp impactor of the UBFC is lower than that of the WBFC.For the ballistic test,it can be found that the ballistic property of the UBFC is higher than that of the WBFC. After the tests,microscopic analysis of the specimens was applied,and their failure mechanism was discussed.The main failure modes of the UBFC are delamination and fibers breakage under the above loading conditions while the main failure mode of the WBFC is fibers breakage.Although delamination damage can be found in the WBFC under the above loading conditions,the degree of delamination is far less than that of the UBFC.展开更多
To discuss the pavement performance of basalt fiber-modified asphalt mixtures,the optimum dosages of asphalt and fibers are studied by the Marshall test and the rutting test.The results demonstrate that the optimum do...To discuss the pavement performance of basalt fiber-modified asphalt mixtures,the optimum dosages of asphalt and fibers are studied by the Marshall test and the rutting test.The results demonstrate that the optimum dosages of asphalt and fibers are 4.63% and 0.3%,respectively.Then the pavement performances of basalt(polyester,xylogen)fiber-modified asphalt mixtures are investigated through high temperature stability tests,water stability tests and low temperature crack resistance tests.It indicates that the pavement performances of the fiber-modified asphalt mixtures such as rutting dynamic stability,freezing splitting tensile strength,low temperature crack resistance and so on are improved compared with control asphalt mixture.The results show that the pavement performances of asphalt mixtures can be improved by fiber-modifiers.Besides,the improvement effects of basalt fiber are superior to polyester fiber and xylogen fiber.展开更多
The fatigue property of asphalt mixtures under complicated environment (low-temperature bending performance, chloride penetration, freezing-thawing cycle and their coupling effect) and the improvement effect for rel...The fatigue property of asphalt mixtures under complicated environment (low-temperature bending performance, chloride penetration, freezing-thawing cycle and their coupling effect) and the improvement effect for relevant property of basalt fiber-reinforcing asphalt mixture under complicated environment are studied. Two grading types of asphalt mixtures, AC-16I and AC-13I, are chosen, whose optimum asphalt-aggregate ratio and optimum dosage of basalt fiber are determined by the Marshall test. The standard specimens are made firstly, and then the low temperature bending tests of asphalt mixture and basalt fiber-reinforced asphalt mixture under the coupling effect of the chloride erosion and freezing-thawing cycle have been carried out. Finally, the fatigue property tests of asphalt mixture and basalt fiber-reinforced asphalt mixture under complex environment are performed on MTS material testing system. The results indicate that the tensile strength, the maximum curving tensile stress, the curving stiffness modulus, and fatigue properties of asphalt mixture are influenced by the coupling effect of the chloride erosion and freezing-thawing cycle. The low-temperature bending performance and fatigue property of asphalt mixtures under complicated environment can be greatly improved by adding moderate basalt fiber. The dense gradation asphalt mixture possesses stronger ability to resist adverse environmental effects under the same condition.展开更多
In the present study,the mechanical properties of polyvinyl alcohol(PVA)-basalt hybrid fiber reinforced engineered cementitious composites(ECC)after exposure to elevated temperatures were experimentally investigated.F...In the present study,the mechanical properties of polyvinyl alcohol(PVA)-basalt hybrid fiber reinforced engineered cementitious composites(ECC)after exposure to elevated temperatures were experimentally investigated.Five temperatures of 20,50,100,200 and 400℃ were set to evaluate the residual compressive,tensile and flexural behaviors of hybrid and mono fiber ECC.It was shown that partial replacement of PVA fibers with basalt fibers endowed ECC with improved residual compressive toughness,compared to brittle failure of mono fiber ECC heated to 400℃.The tension tests indicated that the presence of basalt fibers benefited the tensile strength up to 200℃,and delayed the sharp reduction of strength to 400℃.Under flexural load,the peak deflections corresponding to flexural strengths of hybrid fiber ECC were found to be less vulnerable ranging from 20 to 100℃.Further,the scanning electron microscopy(SEM)results uncovered that the rupture of basalt fiber at moderate temperature and its pullout mechanism at high temperature was responsible for the mechanical evolution of hybrid fiber ECC.This work develops a better understanding of elevated temperature and basalt fiber impact on the residual mechanical properties and further provides guideline for tailoring ECC for improved fire resistance.展开更多
To study the applicability of the basalt fiber through various experimental works in thermal and chemical environments, glass fiber and carbon fiber were compared and discussed. The tensile strength testing was used t...To study the applicability of the basalt fiber through various experimental works in thermal and chemical environments, glass fiber and carbon fiber were compared and discussed. The tensile strength testing was used to investigate the corrosive resistance of basalt fiber, meanwhile, surface study by scanning electron microscopy and microanalysis with complementary X-ray diffraction analysis (SEM/EDS) was also used to ascertain the durability of basalt fiber. The basalt fiber showed better strength retention than the glass fiber at relatively high temperature. Its tensile strength increased when exposed at 300 ~C for several hours, and still maintain about 70% of the initial strength at 400 ~C, whereas that of the glass fiber decreased dramatically. The better stability of the basalt fiber was observed in hydrothermal and chemical environment. The tensile strength of the basalt fiber increased by 20% after the immersion in boiling water and remained well in acid solution, when it comes to glass fiber, the tensile strength decreased to some extent. Although the alkali resistance of basalt fiber was poor at the initial stage, it shows better resistance than the glass fiber after long time treatment.展开更多
The characters of basalt fiber are analyzed and compared with commonly used fibers. The rheological behaviors of the basalt fiber reinforced asphalt mastic are investigated by the dynamic shear rheological tests and t...The characters of basalt fiber are analyzed and compared with commonly used fibers. The rheological behaviors of the basalt fiber reinforced asphalt mastic are investigated by the dynamic shear rheological tests and the repeated creep tests. The results show that basalt fiber has excellent reinforced performances, such as high asphalt absorption ratio, low water absorption ratio, high tensile strength, high elastic modulus and high temperature stability. The rutting factor of the fiber reinforced asphalt mastic is higher than the plain asphalt mastic and the reinforced effects are more remarkable under high temperature. The rheological performances of the asphalt mastic demonstrate a good linear relationship between different temperature and loading frequency. The creep stiffness modulus of the asphalt mastic at different loading time can be expressed by power function. Improved Burgers model is used to represent the rheological behaviors of the asphalt mastic with basalt fiber and the model parameters are estimated.展开更多
In this study,the compressive,split tensile,and flexural strengths of concrete with nano-CaCO_(3) only were compared with those of concrete with nano-CaCO_(3) and basalt fibers through field experiments,and the underl...In this study,the compressive,split tensile,and flexural strengths of concrete with nano-CaCO_(3) only were compared with those of concrete with nano-CaCO_(3) and basalt fibers through field experiments,and the underlying mechanisms were analyzed by the Scanning Electron Microscope (SEM) techniques.On the mesoscale,a damage model of concrete was established based on the continuum progressive damage theory,which was used to investigate the influence of different lengths and contents of fibers on the mechanical properties of concrete.Then,the experimental and numerical simulation results were compared and analyzed to verify the feasibility of model.The results show that nano-CaCO_(3) can enhance the compressive strength of the concrete,with an optimal content of 2.0%.Adding basalt fibers into the nano-CaCO_(3) reinforced concrete may further enhance the compressive,split tensile,and flexural strengths of the concrete;however,the higher content of basalt fiber can not lead to higher performance of concrete.The optimal length and content of fiber are 6 mm and 0.20%,respectively.The SEM result shows that the aggregation of basalt fibers is detrimental to the mechanical properties of concrete.The numerical simulation results are in good agreement with the experimental results.展开更多
Basalt fiber(BF)is widely applied in the construction industry to improve the mechanical properties of construction materials.Recent studies show that BF has the potential to further enhance its performance via a crys...Basalt fiber(BF)is widely applied in the construction industry to improve the mechanical properties of construction materials.Recent studies show that BF has the potential to further enhance its performance via a crystallization approach.In this work,the glass-ceramic basalt fibers(GCBFs)were prepared through nucleation and crystallization treatments according to the crystallization kinetics calculations.Results from XRD and SEM show that GCBFs have main crystalline phases of Diopside and Augite reach crystallinity of around 46%±10%.In particular,the GCBFs sample with the largest mean crystal size maintains the lowest tensile strength of~197 MPa(compared with the pristine BFs of~737 MPa).Moreover,the weight loss and ion dissolution of GCBFs were explored in seawater environments and it was investigated that,GCBFs have better anti-seawater corrosion than the pristine BFs and have the potential to apply in the marine industry.展开更多
In this paper,a notched three-point bending test is used to study the fracture performance of the short basalt fiber bundle reinforced concrete(SBFBRC).To compare and analyze the enhancement effect of different diamet...In this paper,a notched three-point bending test is used to study the fracture performance of the short basalt fiber bundle reinforced concrete(SBFBRC).To compare and analyze the enhancement effect of different diameters and different content of basalt fiber bundles on the fracture performance of concrete,some groups are set up,and the P-CMOD curves of each group of specimens are measured,and the fracture toughness and fracture energy of each control group are calculated.The fracture toughness and fracture energy are two important fracture performance parameters to study the effect and law of the new basalt fiber bundles on the fracture performance of concrete.The research results show that the diameter and content of the new basalt fiber bundles have a certain effect on the fracture performance of concrete.With the increase of the content of basalt fiber bundles,the peak load,crack initiation toughness,instability toughness and fracture energy of SBFBRC are greatly improved compared with the benchmark group.When the fiber bundle diameter is 0.2 mm,the peak load increases by 69.5%compared with the reference group.The instability toughness reaches its maximum value at 0.2 mm diameter,which is 59.7%higher than the benchmark.展开更多
To improve the shear and flexural capacity of flexural members, the steel and basalt fibers were used in model beams tested under flexure. Three series of single span free supported model beams were prepared from SFRC...To improve the shear and flexural capacity of flexural members, the steel and basalt fibers were used in model beams tested under flexure. Three series of single span free supported model beams were prepared from SFRC (steel fiber reinforced concrete) with longitudinal steel reinforcement (steel ratio of 1.2 %) and varied spacing of steel stirrups and they were tested till failure. Another three series of BFRC (basalt fiber reinforced concrete) double-span model beams with a span of 2 mm~ 1,000 mm and cross section 180 mm ~ 80 mm were tested. During the tests till to the failure the beam reactions, vertical deflections and horizontal strains in concrete were registered, to clarify the range of redistribution of bending moments and shear forces over the span of the beams. Almost all the tested model beams failed in shear, showing visible influence of steel and basalt fibers on the shear capacity of the tested beams. The tests results confirmed that steel and basalt fibers in reinforced concrete beams can partially replace (in certain cases) the traditional steel stirrups calculated for shear.展开更多
The high-strength Basalt Carbon Fiber Reinforced Polymer(BCFRP)composites had been manufactured by guiding Imitating Tree-root Micro/Nano Aramid Short Fiber(ITMNASF)into the interlayer of Basalt Fiber(BF)and Carbon Fi...The high-strength Basalt Carbon Fiber Reinforced Polymer(BCFRP)composites had been manufactured by guiding Imitating Tree-root Micro/Nano Aramid Short Fiber(ITMNASF)into the interlayer of Basalt Fiber(BF)and Carbon Fiber(CF)plies to form thin interleaving,and various mass proportions of IT-MNASF were designed to discuss the reinforcing effect on the BCFRP heterogeneous composites.The results of three points bending tests showed that flexural strength and energy absorption of 4wt%IT-MNASF reinforced BCFRP heterogeneous composites had been improved by 32.4%and 134.4%respectively compared with that of unreinforced specimens.The 4wt%IT-MNASF reinforced BCFRP specimens showed both a greater strength and a lower cost(reduced by 31%around)than that of plain CFRP composites.X-ray micro-computed tomography scanning results exhibited that the delamination-dominated failure of plain BCFRP composites was changed into multi-layer BF and CF fabrics damage.The reinforcing mechanism revealed that the introduced IT-MNASF could construct quasi-vertical fiber bridging,and it was used as"mechanical claws"to grasp adjacent fiber layers for creating a stronger mechanical interlocking,and this effectively improved resin-rich region and interfacial transition region at the interlayers.The simple and effective IT-MNASF interleaving technique was very successful in low-cost and high-strength development of BCFRP heterogeneous composites.展开更多
Phenolic-resin composites reinforced with carbon fiber(CF) and basalt fiber(BF) interlayer hybrid fibers plain fabric were fabricated.The tensile strength,compressive strength and interlaminar shear strength of th...Phenolic-resin composites reinforced with carbon fiber(CF) and basalt fiber(BF) interlayer hybrid fibers plain fabric were fabricated.The tensile strength,compressive strength and interlaminar shear strength of the prepared composites were studied.The results indicated that hybrid fibers reinforced composites possessed the advantages of both CF and BF.When resin content was 35% by volume fraction,the comprehensive mechanical performance of BF/CF reinforced phenolic resin composites reached the optimal values with the warp and weft direction tensile strength,compressive strength and interlayer shear strength being 252 MPa and 487 MPa,105 MPa and 129 MPa,21 MPa and 20 MPa,respectively.The scanning electron microscope(SEM) observations showed that the BF/CF hybrid fibers reinforced composites had better interfacial adhesion.展开更多
This paper presents experimental and analytical investigations on concrete beams reinforced with basalt fiber reinforced polymer(BFRP)and steel fibers without stirrups.Independent behaviour of BFRP reinforced beams an...This paper presents experimental and analytical investigations on concrete beams reinforced with basalt fiber reinforced polymer(BFRP)and steel fibers without stirrups.Independent behaviour of BFRP reinforced beams and steel fiber reinforced beams were evaluated and the effect of combining BFRP bars and steel fiber was investigated in detail.It is found that combining s teel fibers with BFRP could change the shear failure of BFRP reinforced beam to flexural failure.Further,the existing analytical models were reviewed and compared to predict the shear strength of both FRP reinforced and steel fiber reinforced beams.Based on the review,the appropriate model was chosen and modified to predict the shear strength of BFRP reinforced beam along with steel fibers.展开更多
In this study,a novel diagonally inserted bar-type basalt fiber reinforced polymer(BFRP)connector was proposed,aiming to achieve both construction convenience and partially composite behavior in precast concrete sandw...In this study,a novel diagonally inserted bar-type basalt fiber reinforced polymer(BFRP)connector was proposed,aiming to achieve both construction convenience and partially composite behavior in precast concrete sandwich panels(PCSPs).First,pull-out tests were conducted to evaluate the anchoring performance of the connector in concrete after exposure to different temperatures.Thereafter,direct shear tests were conducted to investigate the shear performance of the connector.After the test on the individual performance of the connector,five façade PCSP specimens with the bar-type BFRP connector were fabricated,and the out-of-plane flexural performance was tested under a uniformly distributed load.The investigating parameters included the panel length,opening condition,and boundary condition.The results obtained in this study primarily indicated that 1)the bar-type BFRP connector can achieve a reliable anchorage system in concrete;2)the bar-type BFRP connector can offer sufficient stiffness and capacity to achieve a partially composite PCSP;3)the boundary condition of the panel considerably influenced the out-of-plane flexural performance and composite action of the investigated façade PCSP.展开更多
Basalt Fiber Reinforced Polymer(BFRP)composites have huge potential application respects for some civil fields due to enough strength/modulus to weight and low cost by replacing carbon fiber composites.Aiming at the i...Basalt Fiber Reinforced Polymer(BFRP)composites have huge potential application respects for some civil fields due to enough strength/modulus to weight and low cost by replacing carbon fiber composites.Aiming at the issues in the Resin-Rich Region(RRR)and Interfacial Transition Region(ITR)of fiber reinforced polymer composites,the characteristic Aramid Pulp(AP)fibers with micro-fiber trunk and nano-fiber branches were manufactured into multiple non-woven ultra-thin interleaving at the interlayers of BFRP composites via compression molding to reinforce the flexural strengths and elastic moduli.AP fibers were introduced into RRR to form interleaving at the interlayer,the brittle epoxy adhesive layer was improved and enabled to avoid cracking under a low external load.Free fiber branches of AP were also embedded into BF layer to construct quasi-vertical fiber bridging behaviors in ITR,stronger mechanical interlocking was created to prevent crack propagation along the bonding interface of BF/epoxy.Three-point bending testing results showed the interleaving film with 4 g/m^(2)AP exhibited the best effect among various areal densities and yielded average 315.75 MPa in flexural strength and 21.38 GPa in elastic modulus,having a 63.4%increment and a 47.1%increment respectively compared with the bases.Overall,the simple and low-cost AP interleaving is confirmed as an effective method in improving interlayer structure and flexural performance of BFRP composites,which may be considered to manufacture high-performance laminated fiber reinforced polymer composites in civil aviation industry.展开更多
文摘Glued timber structure is one of the main forms of modern wood architecture,which has gradually developed towards mid-and high-rise buildings.Glue-laminated timber(GLT)is comprised of several laminates of parallel-to-grain dimension lumber that are bonded together with durable,moisture resistant structural adhesives.GLT can be used in horizontal applications as a beam and in vertical applications as a post.So,its compressive performance has a significant impact on structural safety.Fiber reinforced polymers(FRPs)were commonly used to improve the bearing capacity of GLT components,and the structural and process parameters largely determined the reinforcement effect.This study was aimed at investigating the influence of structural and process parameters on the axial compression performance of GLT components.Three wrapping methods(middle-part,end-part and full wrapping)and three lengths(0.6,0.8,and 1.0 m)of wood post specimens were designed in this work and the axial compression performance and ductility of GLT post specimens modified by basalt fiber reinforced polymer(BFRP)were studied.The results showed that the effect of different BFRP wrapping methods on the compressive strength and elastic modulus of laminated wood was not statistically significant(P>0.05).The compressive bearing capacity of unreinforced GLT posts decreased with the increase of aspect ratio.The GLT posts with middle-part and end-part wrapping still followed this pattern,while the compressive bearing capacity of GLT posts with full wrapping showed a pattern of first decreasing and then increasing.For GLT with low aspect ratios(4.0 or 5.3),there was no correlation between the wrapping method and the compressive bearing capacity,while the compressive bearing capacity of GLT with a high aspect ratio(6.7)for middle-part,end-part and full wrapping increased by 3.5%,7.5%and 9.7%,respectively.Compared to the unreinforced group,the ultimate axial compressive strength and modulus of elasticity(MOE)of the 6-E series specimens reinforced at both ends decreased by 2.58%and 6.70%,respectively.The ultimate axial compressive strength of the 8-E specimens reinforced at both ends increased by 8.62%and the MOE decreased by 1.91%.The compressive strength of the 10-E specimens reinforced at both ends increased by 7.51%and the MOE increased by 8.14%.The failure modes of GLT with different aspects were consistent under the same BFRP wrapping,while the failure modes of GLT with the same aspect ratio were different for different BFRP wrapping methods.The ductility performance of GLT with different aspects ratio was improved by the BFRP wrapping.
基金the financial support from the National Key Research and Development Program of China(grant no.2020YFA0711800)National Natural Science Foundation of China(grant no.11802027)+2 种基金State Key Laboratory of Explosion Science and Technology(grant no.YPJH20-6,QNKT20-01,JCRC18-01)BITBRFFR Joint Research Program(BITBLR2020018)Beijing Institute of Technology Research Fund。
文摘Continuous basalt fiber(CBF)is an outstanding inorganic fiber produced from nature,which has a wide range of applications in the field of armor protection of national defense military.However,the mechanical response and failure mechanism of 3D printed CBF reinforced components are still not well understood.Here,the 3D printing thermoplastic composites with high volume fraction CBF have been successfully prepared by fused deposition modelling(FDM)method.The effects of fiber printing direction and polymer matrix type on the tensile and flexural properties of the 3D printed composites have been explored,and the detailed failure morphology has been characterized using scanning electron microscopy and optical microscopy.It was found that under high fiber volume fraction,3D printed CBF reinforced polyamides(PA)composites have the best ability to maintain material integrity of the composites,followed by acrylonitrile butadiene styrene(ABS)and high impact polystyrene(HIPS).Besides,the results from rule of mixtures can accurately predict the longitudinal Young’s modulus of the 3D printed specimens,but there exists a large discrepancy for the prediction of the tensile strength.The microstructure analysis shows that the failure modes of 3D printed composites mainly include fiber debonding,fiber pull-out,stress whitening and matrix cracking.
基金supported by the Natural Science Foundation Project of Liaoning Provincial Department of Education of China under Grant No.JJL201915404,Zhejiang Provincial Natural Science Foundation of China under Grant No.LQ22E080024 and Zhejiang Province Department of Education Fund of China under Grant No.Y202146776.
文摘The development of recycled aggregate concrete(RAC)provides a new approach to limiting the waste of natural resources.In the present study,the mechanical properties and deformability of RACs were improved by adding basalt fibers(BFs)and using external restraints,such as a fiber-reinforced polymer(FRP)jacket or a PVC pipe.Samples were tested under axial compression.The results showed that RAC(50%replacement of aggregate)containing 0.2%BFs had the best mechanical properties.Using either BFs or PVC reinforcement had a slight effect on the loadbearing capacity and mode of failure.With different levels of BFs,the compressive strengths of the specimens reinforced with 1-layer and 3-layer basalt fiber reinforced polymer(BFRP)increased by 6.7%–10.5%and 16.5%–23.7%,respectively,and the ultimate strains increased by 48.5%–80.7%and 97.1%–141.1%,respectively.The peak stress of the 3-layer BFRP-PVC increased by 42.2%,and the ultimate strain improved by 131.3%,relative to the control.This reinforcement combined the high tensile strength of BFRP,which improved the post-peak behavior,and PVC,which enhanced the structural durability.In addition,to investigate the influence of the various constraints on compressive behavior,the stress-strain response was analyzed.Based on the analysis of experimental results,a peak stress-strain model and an amended ultimate stress-strain model were proposed.The models were verified as well;the result showed that the predictions from calculations are generally consistent with the experimental data(error within 10%).The results of this study provide a theoretical basis and reference for future applications of fiber-reinforced recycled concrete.
基金supports for the study were provided by the Natural Sciences Foundation Committee of China(Grant No.41472254,Jinming Xu,http://www.nsfc.gov.cn)。
文摘To enhance the sulfate attack resistance performance of concrete,Sulfate erosion test was carried out on basalt fiber concrete with different contents,selecting a concentration of 5%sulfate solution and using a dry−wet cycle mechanism attack of basalt fiber-reinforced concrete(BFRC).Every 15 dry−wet cycles,the mass,compressive strength,splitting tensile strength,and relative dynamic elastic modulus of BFRC were tested,and the SO_(4)^(2−)con-centration was measured.This work demonstrates that the mass,relative dynamic elastic modulus,compressive and splitting tensile strength of BFRC reveal a trend of climb up and then decline with the process of the dry−wet cycle.Basalt fiber can enhance the sulfate corrosion resistance of concrete by delaying the erosion of concrete induced by SO_(4)^(2−)and increasing the bearing and anti-deformation capacities of concrete by improving its inter-nal structure.Additionally,when mixing 0.2%basalt fiber into concrete,the strength deterioration rate will be reduced when the peak values of splitting tensile and compressive strength appear at 60 and 75 times the alter-nating dry−wet cycles,respectively.Adverse effects will occur when the fiber volume fraction exceeds 0.2%.The research in this paper can provide a foundation for the engineering applications of basalt fiber concrete.
基金supported by the National Science Foundation of China(No.51571033)supported in part by the National Natural Science Foundation of China under Grant No.11521062。
文摘The woven basalt fiber composites(WBFC) and the unidirectional [0°/90°/45°/-45°]s basalt fiber composites(UBFC) were prepared by hot-pressing.Three-point bending test,low velocity impact test,and ballistic test were performed to the prepared composites.After the tests,the specimens were recovered and analyzed for micromorphology.Three-point bending tests show that both the bending strength and stiffness of the WBFC surpass those of the UBFC.Low velocity impact test results show that the low velocity impact resistance to hemispherical impactor of the UBFC is higher than that of the WBFC,but the low velocity impact resistance to sharp impactor of the UBFC is lower than that of the WBFC.For the ballistic test,it can be found that the ballistic property of the UBFC is higher than that of the WBFC. After the tests,microscopic analysis of the specimens was applied,and their failure mechanism was discussed.The main failure modes of the UBFC are delamination and fibers breakage under the above loading conditions while the main failure mode of the WBFC is fibers breakage.Although delamination damage can be found in the WBFC under the above loading conditions,the degree of delamination is far less than that of the UBFC.
文摘To discuss the pavement performance of basalt fiber-modified asphalt mixtures,the optimum dosages of asphalt and fibers are studied by the Marshall test and the rutting test.The results demonstrate that the optimum dosages of asphalt and fibers are 4.63% and 0.3%,respectively.Then the pavement performances of basalt(polyester,xylogen)fiber-modified asphalt mixtures are investigated through high temperature stability tests,water stability tests and low temperature crack resistance tests.It indicates that the pavement performances of the fiber-modified asphalt mixtures such as rutting dynamic stability,freezing splitting tensile strength,low temperature crack resistance and so on are improved compared with control asphalt mixture.The results show that the pavement performances of asphalt mixtures can be improved by fiber-modifiers.Besides,the improvement effects of basalt fiber are superior to polyester fiber and xylogen fiber.
基金Fund by Collaborative Innovation Center of Water Conservancy&Transportation Infrastructure Safety,Henan Province,China Postdoctoral Science Fund(No.20110491008)Science and Technology Planning Project of Department of Transportation of Henan Province(No.2013-2-12)The State Key Laboratory Open Fund of Harbor,Coastal and Offshore Engineering(No.LP1113)
文摘The fatigue property of asphalt mixtures under complicated environment (low-temperature bending performance, chloride penetration, freezing-thawing cycle and their coupling effect) and the improvement effect for relevant property of basalt fiber-reinforcing asphalt mixture under complicated environment are studied. Two grading types of asphalt mixtures, AC-16I and AC-13I, are chosen, whose optimum asphalt-aggregate ratio and optimum dosage of basalt fiber are determined by the Marshall test. The standard specimens are made firstly, and then the low temperature bending tests of asphalt mixture and basalt fiber-reinforced asphalt mixture under the coupling effect of the chloride erosion and freezing-thawing cycle have been carried out. Finally, the fatigue property tests of asphalt mixture and basalt fiber-reinforced asphalt mixture under complex environment are performed on MTS material testing system. The results indicate that the tensile strength, the maximum curving tensile stress, the curving stiffness modulus, and fatigue properties of asphalt mixture are influenced by the coupling effect of the chloride erosion and freezing-thawing cycle. The low-temperature bending performance and fatigue property of asphalt mixtures under complicated environment can be greatly improved by adding moderate basalt fiber. The dense gradation asphalt mixture possesses stronger ability to resist adverse environmental effects under the same condition.
基金Project(51808545)supported by the National Natural Science Foundation of ChinaProject(8184083)supported by the Beijing Natural Science Foundation,ChinaProject(2021YQLJ05)supported by the Fundamental Research Funds for the Central Universities,China。
文摘In the present study,the mechanical properties of polyvinyl alcohol(PVA)-basalt hybrid fiber reinforced engineered cementitious composites(ECC)after exposure to elevated temperatures were experimentally investigated.Five temperatures of 20,50,100,200 and 400℃ were set to evaluate the residual compressive,tensile and flexural behaviors of hybrid and mono fiber ECC.It was shown that partial replacement of PVA fibers with basalt fibers endowed ECC with improved residual compressive toughness,compared to brittle failure of mono fiber ECC heated to 400℃.The tension tests indicated that the presence of basalt fibers benefited the tensile strength up to 200℃,and delayed the sharp reduction of strength to 400℃.Under flexural load,the peak deflections corresponding to flexural strengths of hybrid fiber ECC were found to be less vulnerable ranging from 20 to 100℃.Further,the scanning electron microscopy(SEM)results uncovered that the rupture of basalt fiber at moderate temperature and its pullout mechanism at high temperature was responsible for the mechanical evolution of hybrid fiber ECC.This work develops a better understanding of elevated temperature and basalt fiber impact on the residual mechanical properties and further provides guideline for tailoring ECC for improved fire resistance.
文摘To study the applicability of the basalt fiber through various experimental works in thermal and chemical environments, glass fiber and carbon fiber were compared and discussed. The tensile strength testing was used to investigate the corrosive resistance of basalt fiber, meanwhile, surface study by scanning electron microscopy and microanalysis with complementary X-ray diffraction analysis (SEM/EDS) was also used to ascertain the durability of basalt fiber. The basalt fiber showed better strength retention than the glass fiber at relatively high temperature. Its tensile strength increased when exposed at 300 ~C for several hours, and still maintain about 70% of the initial strength at 400 ~C, whereas that of the glass fiber decreased dramatically. The better stability of the basalt fiber was observed in hydrothermal and chemical environment. The tensile strength of the basalt fiber increased by 20% after the immersion in boiling water and remained well in acid solution, when it comes to glass fiber, the tensile strength decreased to some extent. Although the alkali resistance of basalt fiber was poor at the initial stage, it shows better resistance than the glass fiber after long time treatment.
基金Funded by The National Natural Science Foundation of China(No.51108082)
文摘The characters of basalt fiber are analyzed and compared with commonly used fibers. The rheological behaviors of the basalt fiber reinforced asphalt mastic are investigated by the dynamic shear rheological tests and the repeated creep tests. The results show that basalt fiber has excellent reinforced performances, such as high asphalt absorption ratio, low water absorption ratio, high tensile strength, high elastic modulus and high temperature stability. The rutting factor of the fiber reinforced asphalt mastic is higher than the plain asphalt mastic and the reinforced effects are more remarkable under high temperature. The rheological performances of the asphalt mastic demonstrate a good linear relationship between different temperature and loading frequency. The creep stiffness modulus of the asphalt mastic at different loading time can be expressed by power function. Improved Burgers model is used to represent the rheological behaviors of the asphalt mastic with basalt fiber and the model parameters are estimated.
基金Funded by the National Natural Science Foundation of China (No. 51969026)the Natural Science Foundation of Qinghai Province in China (No. 2018-ZJ-750)。
文摘In this study,the compressive,split tensile,and flexural strengths of concrete with nano-CaCO_(3) only were compared with those of concrete with nano-CaCO_(3) and basalt fibers through field experiments,and the underlying mechanisms were analyzed by the Scanning Electron Microscope (SEM) techniques.On the mesoscale,a damage model of concrete was established based on the continuum progressive damage theory,which was used to investigate the influence of different lengths and contents of fibers on the mechanical properties of concrete.Then,the experimental and numerical simulation results were compared and analyzed to verify the feasibility of model.The results show that nano-CaCO_(3) can enhance the compressive strength of the concrete,with an optimal content of 2.0%.Adding basalt fibers into the nano-CaCO_(3) reinforced concrete may further enhance the compressive,split tensile,and flexural strengths of the concrete;however,the higher content of basalt fiber can not lead to higher performance of concrete.The optimal length and content of fiber are 6 mm and 0.20%,respectively.The SEM result shows that the aggregation of basalt fibers is detrimental to the mechanical properties of concrete.The numerical simulation results are in good agreement with the experimental results.
基金Sponsored by the National Key R&D Program of China(Grant No.2021YFB3701600)the National Natural Science Foundation of China(Grant No.51873032)+2 种基金the Fundamental Research Funds for the Central Universities(Grant Nos.223201900003, 2232021D-04, 2232021D-07, 2232021G-07)the Key Research and Development Program of Shandong Province(Grant No.2019JZZY010308)the Open Fund of the State Key Laboratory of Luminescent Materials and Devices(South China University of Technology)。
文摘Basalt fiber(BF)is widely applied in the construction industry to improve the mechanical properties of construction materials.Recent studies show that BF has the potential to further enhance its performance via a crystallization approach.In this work,the glass-ceramic basalt fibers(GCBFs)were prepared through nucleation and crystallization treatments according to the crystallization kinetics calculations.Results from XRD and SEM show that GCBFs have main crystalline phases of Diopside and Augite reach crystallinity of around 46%±10%.In particular,the GCBFs sample with the largest mean crystal size maintains the lowest tensile strength of~197 MPa(compared with the pristine BFs of~737 MPa).Moreover,the weight loss and ion dissolution of GCBFs were explored in seawater environments and it was investigated that,GCBFs have better anti-seawater corrosion than the pristine BFs and have the potential to apply in the marine industry.
基金supported by the financial support from the Key R&D Projects of the Ministry of Transport(2018-MS5-136)Henan Province Transportation Science and Technology Plan Project(2018J2,2019J-2-10,2020J-2-7).
文摘In this paper,a notched three-point bending test is used to study the fracture performance of the short basalt fiber bundle reinforced concrete(SBFBRC).To compare and analyze the enhancement effect of different diameters and different content of basalt fiber bundles on the fracture performance of concrete,some groups are set up,and the P-CMOD curves of each group of specimens are measured,and the fracture toughness and fracture energy of each control group are calculated.The fracture toughness and fracture energy are two important fracture performance parameters to study the effect and law of the new basalt fiber bundles on the fracture performance of concrete.The research results show that the diameter and content of the new basalt fiber bundles have a certain effect on the fracture performance of concrete.With the increase of the content of basalt fiber bundles,the peak load,crack initiation toughness,instability toughness and fracture energy of SBFBRC are greatly improved compared with the benchmark group.When the fiber bundle diameter is 0.2 mm,the peak load increases by 69.5%compared with the reference group.The instability toughness reaches its maximum value at 0.2 mm diameter,which is 59.7%higher than the benchmark.
文摘To improve the shear and flexural capacity of flexural members, the steel and basalt fibers were used in model beams tested under flexure. Three series of single span free supported model beams were prepared from SFRC (steel fiber reinforced concrete) with longitudinal steel reinforcement (steel ratio of 1.2 %) and varied spacing of steel stirrups and they were tested till failure. Another three series of BFRC (basalt fiber reinforced concrete) double-span model beams with a span of 2 mm~ 1,000 mm and cross section 180 mm ~ 80 mm were tested. During the tests till to the failure the beam reactions, vertical deflections and horizontal strains in concrete were registered, to clarify the range of redistribution of bending moments and shear forces over the span of the beams. Almost all the tested model beams failed in shear, showing visible influence of steel and basalt fibers on the shear capacity of the tested beams. The tests results confirmed that steel and basalt fibers in reinforced concrete beams can partially replace (in certain cases) the traditional steel stirrups calculated for shear.
基金Supported financially by the National Natural Science Foundation of China(No.52102115)the High-end Foreign Expert Recruitment Plan of China(No.G2023036002L)+2 种基金the Natural Science Foundation of Sichuan Province,China(No.2023NSFSC0961)Shock and Vibration of Engineering Materials and Structures Key Lab of Sichuan Province,China(No.23kfgk06)the Postgraduate Innovation Fund Project by Southwest University of Science and Technology,China(No.24ycx2027).
文摘The high-strength Basalt Carbon Fiber Reinforced Polymer(BCFRP)composites had been manufactured by guiding Imitating Tree-root Micro/Nano Aramid Short Fiber(ITMNASF)into the interlayer of Basalt Fiber(BF)and Carbon Fiber(CF)plies to form thin interleaving,and various mass proportions of IT-MNASF were designed to discuss the reinforcing effect on the BCFRP heterogeneous composites.The results of three points bending tests showed that flexural strength and energy absorption of 4wt%IT-MNASF reinforced BCFRP heterogeneous composites had been improved by 32.4%and 134.4%respectively compared with that of unreinforced specimens.The 4wt%IT-MNASF reinforced BCFRP specimens showed both a greater strength and a lower cost(reduced by 31%around)than that of plain CFRP composites.X-ray micro-computed tomography scanning results exhibited that the delamination-dominated failure of plain BCFRP composites was changed into multi-layer BF and CF fabrics damage.The reinforcing mechanism revealed that the introduced IT-MNASF could construct quasi-vertical fiber bridging,and it was used as"mechanical claws"to grasp adjacent fiber layers for creating a stronger mechanical interlocking,and this effectively improved resin-rich region and interfacial transition region at the interlayers.The simple and effective IT-MNASF interleaving technique was very successful in low-cost and high-strength development of BCFRP heterogeneous composites.
文摘Phenolic-resin composites reinforced with carbon fiber(CF) and basalt fiber(BF) interlayer hybrid fibers plain fabric were fabricated.The tensile strength,compressive strength and interlaminar shear strength of the prepared composites were studied.The results indicated that hybrid fibers reinforced composites possessed the advantages of both CF and BF.When resin content was 35% by volume fraction,the comprehensive mechanical performance of BF/CF reinforced phenolic resin composites reached the optimal values with the warp and weft direction tensile strength,compressive strength and interlayer shear strength being 252 MPa and 487 MPa,105 MPa and 129 MPa,21 MPa and 20 MPa,respectively.The scanning electron microscope(SEM) observations showed that the BF/CF hybrid fibers reinforced composites had better interfacial adhesion.
文摘This paper presents experimental and analytical investigations on concrete beams reinforced with basalt fiber reinforced polymer(BFRP)and steel fibers without stirrups.Independent behaviour of BFRP reinforced beams and steel fiber reinforced beams were evaluated and the effect of combining BFRP bars and steel fiber was investigated in detail.It is found that combining s teel fibers with BFRP could change the shear failure of BFRP reinforced beam to flexural failure.Further,the existing analytical models were reviewed and compared to predict the shear strength of both FRP reinforced and steel fiber reinforced beams.Based on the review,the appropriate model was chosen and modified to predict the shear strength of BFRP reinforced beam along with steel fibers.
基金financially supported by the National Natural Science Foundation of China(Grant No.51878233)the Fundamental Research Funds for the Central Universities(No.JZ2021HGTA0164)+1 种基金the Key Research and Development Project of Anhui Province,China(No.202104a07020022)from Anhui Provincial Natural Science Foundation(No.2208085QE172).
文摘In this study,a novel diagonally inserted bar-type basalt fiber reinforced polymer(BFRP)connector was proposed,aiming to achieve both construction convenience and partially composite behavior in precast concrete sandwich panels(PCSPs).First,pull-out tests were conducted to evaluate the anchoring performance of the connector in concrete after exposure to different temperatures.Thereafter,direct shear tests were conducted to investigate the shear performance of the connector.After the test on the individual performance of the connector,five façade PCSP specimens with the bar-type BFRP connector were fabricated,and the out-of-plane flexural performance was tested under a uniformly distributed load.The investigating parameters included the panel length,opening condition,and boundary condition.The results obtained in this study primarily indicated that 1)the bar-type BFRP connector can achieve a reliable anchorage system in concrete;2)the bar-type BFRP connector can offer sufficient stiffness and capacity to achieve a partially composite PCSP;3)the boundary condition of the panel considerably influenced the out-of-plane flexural performance and composite action of the investigated façade PCSP.
基金supported financially by the National Natural Science Foundations of China(No.52102115)the Overseas High-End Talent Introduction Project of Sichuan Province,China(No.2023JDGD0013)the Natural Science Foundations of Sichuan Province,China(No.2023NSFSC0961)。
文摘Basalt Fiber Reinforced Polymer(BFRP)composites have huge potential application respects for some civil fields due to enough strength/modulus to weight and low cost by replacing carbon fiber composites.Aiming at the issues in the Resin-Rich Region(RRR)and Interfacial Transition Region(ITR)of fiber reinforced polymer composites,the characteristic Aramid Pulp(AP)fibers with micro-fiber trunk and nano-fiber branches were manufactured into multiple non-woven ultra-thin interleaving at the interlayers of BFRP composites via compression molding to reinforce the flexural strengths and elastic moduli.AP fibers were introduced into RRR to form interleaving at the interlayer,the brittle epoxy adhesive layer was improved and enabled to avoid cracking under a low external load.Free fiber branches of AP were also embedded into BF layer to construct quasi-vertical fiber bridging behaviors in ITR,stronger mechanical interlocking was created to prevent crack propagation along the bonding interface of BF/epoxy.Three-point bending testing results showed the interleaving film with 4 g/m^(2)AP exhibited the best effect among various areal densities and yielded average 315.75 MPa in flexural strength and 21.38 GPa in elastic modulus,having a 63.4%increment and a 47.1%increment respectively compared with the bases.Overall,the simple and low-cost AP interleaving is confirmed as an effective method in improving interlayer structure and flexural performance of BFRP composites,which may be considered to manufacture high-performance laminated fiber reinforced polymer composites in civil aviation industry.