The kinetics of the thermal decomposition for a naturally ageing ammonium perchlorate(AP) and hydroxyl-terminated-polybutadiene(HTPB) base bleed composite propellant were investigated using a differential scanning cal...The kinetics of the thermal decomposition for a naturally ageing ammonium perchlorate(AP) and hydroxyl-terminated-polybutadiene(HTPB) base bleed composite propellant were investigated using a differential scanning calorimetry(DSC). The naturally ageing AP/HTPB base bleed propellant samples have been stored in a sealed plastic bag at room temperature(5-25 ℃) for more than 20 years. The experimental DSC results were obtained by placing samples(each about 1.5 mg) in a sealed pan under non-isothermal condition under different heating rates, 5.0, 10.0, 15.0, 20.0 and 30.0 ℃·min^(-1). The activation energy and pre-exponential factor were estimated based on the relationship between the exothermic peak temperature and the heating rate by Ozawa and Kissinger methods, respectively. The decomposition kinetic parameters is lower the values under laboratorial aging condition.展开更多
A complex multiple flame structure is formed during the combustion of AP/HTPB base bleed propellant.The AP monopropellant flame is concentrated in a thin zone above the burning surface of AP crystal to maintain self-s...A complex multiple flame structure is formed during the combustion of AP/HTPB base bleed propellant.The AP monopropellant flame is concentrated in a thin zone above the burning surface of AP crystal to maintain self-sustained decomposition.Due to the low temperature near the burning surface,the diffusion between the decomposition products of AP and the pyrolysis products of HTPB occurs,and a partly pre-mixed diffusion flame structure-leading edge flame(LEF)is formed.The effects of pressure,chemical reaction rate and AP particle size on diffusion flame structure in the range from 20 atm to 100 atm are discussed.The Peclet number increases from 6.64 at 20 atm to 21.91 at 100 atm when AP particle size is 140 mm.The high temperature zone is blown away from the burning surface because the convective transport rate increases with the increase in Peclet number.The chemical reaction rate is enhanced and the diffusion mixing is inhibited as Damkohler number increases.The chemical heat release is more concentrated and the chemical reaction zone becomes narrow when Damkohler number changes from 330 at20 atm to 4700 at 100 atm.When AP particle diameter is decreased to 60 mm,the diffusion time scale is reduced due to the reduced diffusion length scale.So the diffusion mixing is enhanced and a more pre-mixed flame is formed.The burning rate increases because the more pre-mixed heat release increases the heat feedback to the HTPB binder.展开更多
The gridless method coupled with finite rate chemistry model is employed to simulate the external combustion flow fields of M864 base bleed projectile. The fluid dynamics process is described by Euler Equation in 2-D ...The gridless method coupled with finite rate chemistry model is employed to simulate the external combustion flow fields of M864 base bleed projectile. The fluid dynamics process is described by Euler Equation in 2-D axisymmetric coordinate. The numerical method is based on least-square gridless method,and the inviscid flux is calculated by multi-component HLLC( Harten-Lax-van Leer-Contact) scheme,and a H2-CO reaction mechanism involving 9 species and 11 reactions is used. The computations are performed for the full projectile configuration of Ma = 1. 5,2,and 3. The hot air injection cases and inert cases are simulated for comparison. The numerical results show that due to the combustion in the weak region,the recirculation zone enlarges and moves downstream,the base pressure increases and the total drag force coefficient decreases. At Ma = 3. 0,the rear stagnation point shifts downstream approximate 0. 26 caliber,and the base pressure increases about 53. 4%,and the total drag force coefficient decreases to 0. 182 which agrees well with the trajectory model prediction. Due to neglecting the effects of viscosity and turbulence,there exists a certain difference at Ma = 1. 5,2. 0.展开更多
In order to improve the benefits of base bleed in base flow field,the base flow with hot base bleed for two jet models is studied.Twodimensional axisymmetric Navier-Stokes equations are computed by using a finite volu...In order to improve the benefits of base bleed in base flow field,the base flow with hot base bleed for two jet models is studied.Twodimensional axisymmetric Navier-Stokes equations are computed by using a finite volume scheme.The base flow of a cylinder afterbody with base bleed is simulated.The simulation results are validated with the experimental data,and the experimental results are well reproduced.On this basis,the base flow fields with base bleed for a circular jet model and an annulus jet model are investigated by selecting the injection temperature from 830 K to 2200 K.The results show that the base pressure of the annular jet model is higher than that of the circular jet model with the changes of the injection parameter and the injection temperature.For the circular jet model,the hot gases are concentrated in the vicinity of the base.For the annular jet model,the bleed gases flow into the shear layer directly so that the hot gases are concentrated in the shear layer.The latter temperature distribution is better for the increase of base pressure.展开更多
Grout injection is used for sealing or strengthening the ground in order to prevent water entrance or any failure after excavation.There are many methods of grouting.Permeation grouting is one of the most common types...Grout injection is used for sealing or strengthening the ground in order to prevent water entrance or any failure after excavation.There are many methods of grouting.Permeation grouting is one of the most common types in which the grout material is injected to the pore spaces of the ground.In grouting operations,the grout quality is important to achieve the best results.There are four main characteristics for a grout mixture including bleeding,setting time,strength,and viscosity.In this paper,we try to build some efficient grouting mixtures with different water to cement ratios considering these characteristics.The ingredients of grout mixtures built in this study are cement,water,bentonite,and some chemical additives such as sodium silicate,sodium carbonate,and triethanolamine(TEA).The grout mixtures are prepared for both of the sealing and strengthening purposes for a structural project.Effect of each abovementioned ingredient is profoundly investigated.Since each ingredient may have positive or negative aspect,an optimization of appropriate amount of each ingredient is determined.The optimization is based on 200 grout mixture samples with different percentages of ingredients.Finally,some of these grout mixtures are chosen for the introduced project.It should be mentioned that grouting operations depend on various factors such as pressure of injection,ground structure and grain size of soils.However,quality of a grout can be helpful to make an injection easier and reasonable.For example,during the injection,a wrong estimated setting time can destroy the injected grout by washing the grout or setting early which prevents grouting.This paper tries to show some tests in easy way to achieve a desirable sample of grout.展开更多
文摘The kinetics of the thermal decomposition for a naturally ageing ammonium perchlorate(AP) and hydroxyl-terminated-polybutadiene(HTPB) base bleed composite propellant were investigated using a differential scanning calorimetry(DSC). The naturally ageing AP/HTPB base bleed propellant samples have been stored in a sealed plastic bag at room temperature(5-25 ℃) for more than 20 years. The experimental DSC results were obtained by placing samples(each about 1.5 mg) in a sealed pan under non-isothermal condition under different heating rates, 5.0, 10.0, 15.0, 20.0 and 30.0 ℃·min^(-1). The activation energy and pre-exponential factor were estimated based on the relationship between the exothermic peak temperature and the heating rate by Ozawa and Kissinger methods, respectively. The decomposition kinetic parameters is lower the values under laboratorial aging condition.
基金the financial support provided by the National Natural Science Foundation of China(No.51176076)
文摘A complex multiple flame structure is formed during the combustion of AP/HTPB base bleed propellant.The AP monopropellant flame is concentrated in a thin zone above the burning surface of AP crystal to maintain self-sustained decomposition.Due to the low temperature near the burning surface,the diffusion between the decomposition products of AP and the pyrolysis products of HTPB occurs,and a partly pre-mixed diffusion flame structure-leading edge flame(LEF)is formed.The effects of pressure,chemical reaction rate and AP particle size on diffusion flame structure in the range from 20 atm to 100 atm are discussed.The Peclet number increases from 6.64 at 20 atm to 21.91 at 100 atm when AP particle size is 140 mm.The high temperature zone is blown away from the burning surface because the convective transport rate increases with the increase in Peclet number.The chemical reaction rate is enhanced and the diffusion mixing is inhibited as Damkohler number increases.The chemical heat release is more concentrated and the chemical reaction zone becomes narrow when Damkohler number changes from 330 at20 atm to 4700 at 100 atm.When AP particle diameter is decreased to 60 mm,the diffusion time scale is reduced due to the reduced diffusion length scale.So the diffusion mixing is enhanced and a more pre-mixed flame is formed.The burning rate increases because the more pre-mixed heat release increases the heat feedback to the HTPB binder.
文摘The gridless method coupled with finite rate chemistry model is employed to simulate the external combustion flow fields of M864 base bleed projectile. The fluid dynamics process is described by Euler Equation in 2-D axisymmetric coordinate. The numerical method is based on least-square gridless method,and the inviscid flux is calculated by multi-component HLLC( Harten-Lax-van Leer-Contact) scheme,and a H2-CO reaction mechanism involving 9 species and 11 reactions is used. The computations are performed for the full projectile configuration of Ma = 1. 5,2,and 3. The hot air injection cases and inert cases are simulated for comparison. The numerical results show that due to the combustion in the weak region,the recirculation zone enlarges and moves downstream,the base pressure increases and the total drag force coefficient decreases. At Ma = 3. 0,the rear stagnation point shifts downstream approximate 0. 26 caliber,and the base pressure increases about 53. 4%,and the total drag force coefficient decreases to 0. 182 which agrees well with the trajectory model prediction. Due to neglecting the effects of viscosity and turbulence,there exists a certain difference at Ma = 1. 5,2. 0.
基金supported by National Nature Science Foundation of China(Grant No.51176076)
文摘In order to improve the benefits of base bleed in base flow field,the base flow with hot base bleed for two jet models is studied.Twodimensional axisymmetric Navier-Stokes equations are computed by using a finite volume scheme.The base flow of a cylinder afterbody with base bleed is simulated.The simulation results are validated with the experimental data,and the experimental results are well reproduced.On this basis,the base flow fields with base bleed for a circular jet model and an annulus jet model are investigated by selecting the injection temperature from 830 K to 2200 K.The results show that the base pressure of the annular jet model is higher than that of the circular jet model with the changes of the injection parameter and the injection temperature.For the circular jet model,the hot gases are concentrated in the vicinity of the base.For the annular jet model,the bleed gases flow into the shear layer directly so that the hot gases are concentrated in the shear layer.The latter temperature distribution is better for the increase of base pressure.
文摘Grout injection is used for sealing or strengthening the ground in order to prevent water entrance or any failure after excavation.There are many methods of grouting.Permeation grouting is one of the most common types in which the grout material is injected to the pore spaces of the ground.In grouting operations,the grout quality is important to achieve the best results.There are four main characteristics for a grout mixture including bleeding,setting time,strength,and viscosity.In this paper,we try to build some efficient grouting mixtures with different water to cement ratios considering these characteristics.The ingredients of grout mixtures built in this study are cement,water,bentonite,and some chemical additives such as sodium silicate,sodium carbonate,and triethanolamine(TEA).The grout mixtures are prepared for both of the sealing and strengthening purposes for a structural project.Effect of each abovementioned ingredient is profoundly investigated.Since each ingredient may have positive or negative aspect,an optimization of appropriate amount of each ingredient is determined.The optimization is based on 200 grout mixture samples with different percentages of ingredients.Finally,some of these grout mixtures are chosen for the introduced project.It should be mentioned that grouting operations depend on various factors such as pressure of injection,ground structure and grain size of soils.However,quality of a grout can be helpful to make an injection easier and reasonable.For example,during the injection,a wrong estimated setting time can destroy the injected grout by washing the grout or setting early which prevents grouting.This paper tries to show some tests in easy way to achieve a desirable sample of grout.