When better fuel-air mixing in the combustion chamber or a reduction in base drag are required in vehicles,rockets,and aeroplanes,the base pressure control is activated.Controlling the base pressure and drag is necess...When better fuel-air mixing in the combustion chamber or a reduction in base drag are required in vehicles,rockets,and aeroplanes,the base pressure control is activated.Controlling the base pressure and drag is necessary in both scenarios.In this work,semi-circular ribs with varying diameters(2,4,and 6 mm)positioned at six distinct positions(0.5D,1D,1.5D,2D,3D,and 4D)inside a square duct with a side of 15 mm are proposed as an efficient way to apply the passive control technique.In-depth research is done on optimising rib size for various rib sites.According to this study,the base pressure rises as rib height increases.Furthermore,the optimal location for the semi-circular ribs with a diameter of 2 mm is at 0.5D.The 1D location appears to be optimal for the 4 mm size as well.For the 6 mm size,however,the 4D position fills this function.展开更多
In the present study,the base pressure variations induced by the presence of a cavity,known to have a strong influence of the behaviour of supersonic projectiles,are investigated through numerical solution of the bala...In the present study,the base pressure variations induced by the presence of a cavity,known to have a strong influence of the behaviour of supersonic projectiles,are investigated through numerical solution of the balance equations for mass,momentum,and energy.An area ratio of four is considered and numerical simulations are carried out at Mach M=1.2,1.4,1.6,and 1.8 assuming no cavity or cavity locations 0.5D,1D,1.5D,and 2D.The inlet pressure of the nozzle is considered as a flow variable.The Taguchi method is also used,and the considered cases are then analyzed using a full factorial experimental design.The results show that the cavity is effective in increasing the base pressure for the conditions examined.For other nozzle pressure ratios,cavities do not lead to passive control due the change in the reattachment length.The distribution of wall pressure reveals that,in general,a cavity used to implement passive control of the base pressure does not adversely influence the flow pattern in the domain.展开更多
The minimization of base drag using mass bleed control is examined in consideration of various base to orifice exit area ratios for a body of revolution in the Mach 2.47 freestream Axisymmetric, compressible, rmss-ave...The minimization of base drag using mass bleed control is examined in consideration of various base to orifice exit area ratios for a body of revolution in the Mach 2.47 freestream Axisymmetric, compressible, rmss-averaged Navier-Stokes equations are solved using the standard k-ω model, a fully implicit finite volume scheme, and a second order upwind scheme. Base flow charcteristics are explained mgaarding the base configuration as well as the injection parameter which is defined as the mass flow rate of bleed jet non-dimensionalized by the product of the base area and fieestream mass flux. The results obtained through the present study show that for a smaller base area, the optimum mass bleed condition leading to minimum base drag occurs at relatively larger mass bleed, and a lalger orifice exit can offer better drag control.展开更多
Our previous experimental studies have confirmed that viscoelastic-fluid-based nanofluid(VFBN) prepared by suspending nanoparticles in a viscoelastic base fluid(VBF, behaves drag reduction at turbulent flow state) can...Our previous experimental studies have confirmed that viscoelastic-fluid-based nanofluid(VFBN) prepared by suspending nanoparticles in a viscoelastic base fluid(VBF, behaves drag reduction at turbulent flow state) can reduce turbulent flow resistance as compared with water and enhance heat transfer as compared with VBF. Direct numerical simulation(DNS) is performed in this study to explore the mechanisms of heat transfer enhancement(HTE) and flow drag reduction(DR) for the VFBN turbulent flow. The Giesekus model is used as the constitutive equation for VFBN. Our previously proposed thermal dispersion model is adopted to take into account the thermal dispersion effects of nanoparticles in the VFBN turbulent flow. The DNS results show similar behaviors for flow resistance and heat transfer to those obtained in our previous experiments. Detailed analyses are conducted for the turbulent velocity, temperature, and conformation fields obtained by DNSs for different fluid cases, and for the friction factor with viscous, turbulent, and elastic contributions and heat transfer rate with conductive, turbulent and thermal dispersion contributions of nanoparticles, respectively. The mechanisms of HTE and DR of VFBN turbulent flows are then discussed. Based on analogy theory, the ratios of Chilton–Colburn factor to friction factor for different fluid flow cases are investigated, which from another aspect show the significant enhancement in heat transfer performance for some cases of water-based nanofluid and VFBN turbulent flows.展开更多
基金supported by the Structures and Materials(S&M)Research Lab of Prince Sultan Universitysupport of Prince Sultan University in paying the article processing charges(APC)for this publication.
文摘When better fuel-air mixing in the combustion chamber or a reduction in base drag are required in vehicles,rockets,and aeroplanes,the base pressure control is activated.Controlling the base pressure and drag is necessary in both scenarios.In this work,semi-circular ribs with varying diameters(2,4,and 6 mm)positioned at six distinct positions(0.5D,1D,1.5D,2D,3D,and 4D)inside a square duct with a side of 15 mm are proposed as an efficient way to apply the passive control technique.In-depth research is done on optimising rib size for various rib sites.According to this study,the base pressure rises as rib height increases.Furthermore,the optimal location for the semi-circular ribs with a diameter of 2 mm is at 0.5D.The 1D location appears to be optimal for the 4 mm size as well.For the 6 mm size,however,the 4D position fills this function.
文摘In the present study,the base pressure variations induced by the presence of a cavity,known to have a strong influence of the behaviour of supersonic projectiles,are investigated through numerical solution of the balance equations for mass,momentum,and energy.An area ratio of four is considered and numerical simulations are carried out at Mach M=1.2,1.4,1.6,and 1.8 assuming no cavity or cavity locations 0.5D,1D,1.5D,and 2D.The inlet pressure of the nozzle is considered as a flow variable.The Taguchi method is also used,and the considered cases are then analyzed using a full factorial experimental design.The results show that the cavity is effective in increasing the base pressure for the conditions examined.For other nozzle pressure ratios,cavities do not lead to passive control due the change in the reattachment length.The distribution of wall pressure reveals that,in general,a cavity used to implement passive control of the base pressure does not adversely influence the flow pattern in the domain.
文摘The minimization of base drag using mass bleed control is examined in consideration of various base to orifice exit area ratios for a body of revolution in the Mach 2.47 freestream Axisymmetric, compressible, rmss-averaged Navier-Stokes equations are solved using the standard k-ω model, a fully implicit finite volume scheme, and a second order upwind scheme. Base flow charcteristics are explained mgaarding the base configuration as well as the injection parameter which is defined as the mass flow rate of bleed jet non-dimensionalized by the product of the base area and fieestream mass flux. The results obtained through the present study show that for a smaller base area, the optimum mass bleed condition leading to minimum base drag occurs at relatively larger mass bleed, and a lalger orifice exit can offer better drag control.
基金supported by the National Natural Science Foundation of China(Grant No.51276046)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20112302110020)+1 种基金the China Postdoctoral Science Foundation(Grant No.2014M561037)the President Fund of University of Chinese Academy of Sciences,China(Grant No.Y3510213N00)
文摘Our previous experimental studies have confirmed that viscoelastic-fluid-based nanofluid(VFBN) prepared by suspending nanoparticles in a viscoelastic base fluid(VBF, behaves drag reduction at turbulent flow state) can reduce turbulent flow resistance as compared with water and enhance heat transfer as compared with VBF. Direct numerical simulation(DNS) is performed in this study to explore the mechanisms of heat transfer enhancement(HTE) and flow drag reduction(DR) for the VFBN turbulent flow. The Giesekus model is used as the constitutive equation for VFBN. Our previously proposed thermal dispersion model is adopted to take into account the thermal dispersion effects of nanoparticles in the VFBN turbulent flow. The DNS results show similar behaviors for flow resistance and heat transfer to those obtained in our previous experiments. Detailed analyses are conducted for the turbulent velocity, temperature, and conformation fields obtained by DNSs for different fluid cases, and for the friction factor with viscous, turbulent, and elastic contributions and heat transfer rate with conductive, turbulent and thermal dispersion contributions of nanoparticles, respectively. The mechanisms of HTE and DR of VFBN turbulent flows are then discussed. Based on analogy theory, the ratios of Chilton–Colburn factor to friction factor for different fluid flow cases are investigated, which from another aspect show the significant enhancement in heat transfer performance for some cases of water-based nanofluid and VFBN turbulent flows.