-
题名髋关节表面置换与全髋关节置换疗效的Meta分析
被引量:2
- 1
-
-
作者
张丕军
洪顾麒
王钢
-
机构
南方医科大学南方医院创伤骨科
-
出处
《中国组织工程研究》
CAS
CSCD
2013年第26期4872-4879,共8页
-
文摘
背景:髋关节表面置换近年来得到了越来越广泛的应用,其与传统的全髋关节置换相比哪种方式的效果更好仍有较大争议。目的:通过综合分析已发表的文献,探讨比较髋关节表面置换与传统的全髋关节置换的优缺点。方法:检索1900年1月至2012年7月关于髋关节表面置换和全髋关节置换的随机对照研究,严格评价纳入研究质量并提取资料。采用RevMan5.1.6进行统计学Meta分析。结果与结论:共纳入10个随机对照试验,Meta分析结果显示髋关节表面置换与全髋关节置换在平均手术时间、术中平均失血量、置换后1年Harris评分、置换后1年美国加州大学髋关节功能评分、置换后2年血清钴、铬离子水平方面均差异无显著性意义;髋关节表面置换组置换后平均髋臼倾斜角大于全髋关节置换组。结果说明髋关节表面置换和全髋关节置换的短期随访结果并无明显的差异,但二者远期效果如何需更多高质量、大样本临床随机对照试验进行评价。
-
关键词
骨关节植入物
骨与关节循证医学
全髋置换
表面置换
髋
HARRIS评分
离子水平
循证医学
关节置换
髋臼倾斜角
-
Keywords
bone and joint implants
evidence based medicine of bone and joint
total hip replacemen
surfacereplacement
hip
Harris score
ion level
evidence-based medicine
joint replacement
acetabulum anteversionangle
-
分类号
R318
[医药卫生—生物医学工程]
-
-
题名表面等离子体无掩膜干涉光刻系统的数值分析(英文)
被引量:5
- 2
-
-
作者
董启明
郭小伟
-
机构
电子科技大学光电信息学院
-
出处
《光子学报》
EI
CAS
CSCD
北大核心
2012年第5期558-564,共7页
-
基金
The National Natural Science Foundation of China(No.60906052)
-
文摘
表面等离子体激元具有近场增强效应,可以代替光子作为曝光源形成纳米级特征尺寸的图像.本文数值分析了棱镜辅助表面等离子体干涉系统的参量空间,并给出了计算原理和方法.结果表明,适当地选择高折射率棱镜、低银层厚度、入射波长和光刻胶折射率,可以获得高曝光度、高对比度的干涉图像.入射波长为431nm时,选择40nm厚的银层,曝光深度可达200nm,条纹周期为110nm.数值分析结果为实验的安排提供了理论支持.
-
关键词
干涉光刻
表面等离子体激元
克莱舒曼结构
-
Keywords
Interference lithography
Surface plasmon plortiton
Kretschmann structureCLCN: TN305.7 Document Code:A Article ID:1004-4213(2012)05-0558-70 IntroductionThere is a growing interest in exploring new nanolithography techniques with high efficiency,low cost and large-area fabrication to fabricate nanoscale devices for nanotechnology applications.Conventional photolithography has remained a useful microfabrication technology because of its ease of repetition and suitability for large-area fabrication[1].The diffraction limit,however,restricts the fabrication scale of photolithography[2].Potential solutions that have actually been pursued require increasingly shorter illumination wavelengths for replicating smaller structures.It is becoming more difficult and complicated to use the short optical wavelengths to reach the desired feature sizes.Other methods such as electron beam lithography[3],ion beam lithography[4],scanning probe lithography[5],nanoimprint lithography(NIL)[6],and evanescent near-field optical lithography(ENFOL)[7] have been developed in order to achieve nanometer-scale features.As we know,the former three techniques need scanning and accordingly are highly inefficient.In NIL,the leveling of the imprint template and the substrate during the printing process,which determines the uniformity of the imprint result,is a challenging issue of this method.ENFOL have the potential to produce subwavelength structures with high efficiency,but it encounters the fact that the evanescent field decays rapidly through the aperture,thus attenuating the transmission intensity at the exit plane and limiting the exposure distance to the scale of a few tens of nanometers from the mask.In recent years,the use of surface-plasmon polaritons(SPPs) instead of photons as an exposure source was rapidly developed to fabricate nanoscale structures.SPPs are characterized by its near field enhancement so that SPP-based lithography can greatly extend exposure depth and improve pattern contrast.Grating-assisted SPP interference,such as SPP resonant interference nanolithography[8] and SPP-assisted interference nanolithography[9],achieved a sub-100nm interference pattern.The techniques,however,are necessary to fabricate a metal grating with a very fine period and only suitable for small-area interference.To avoid the fabrication of the metal grating,a prism-based SPP maskless interference lithography was proposed in 2006,which promises good lithography performance.The approach offers potential to achieve sub-65nm and even sub-32nm feature sizes.However,the structure parameters are always not ideal in a real system.One wants to know how much influence the parameter variations have on the pattern resolution and what variations of the parameters are allowed to obtain an effective interference.Thus,it is necessary to explore the parameter spaces.1 SPP maskless interference lithography systemThe SPP maskless interference lithography system is shown in Fig.1.A p-polarized laser is divided into two beams by a grating splitter,and then goes into the prism-based multilayer system.Under a given condition,the metal film can exhibit collective electron oscillations known as SPPs which are charge density waves that are characterized by intense electromagnetic fields confined to the metallic surface.If the metal layer Fig.1 Schematic for SPP maskless interference lithography systemis sufficiently thin,plasma waves at both metal interfaces are coupled,resulting in symmetric and antisymmetric SPPs.When the thickness h of metal film,dielectric constant ε1,ε2,ε3 of medium above,inside,below the metal film are specified,the coupling equation is shown as followstanh(S2h)(ε1ε3S22+ε22S1S3)+(ε1ε2S2S3+ε2ε3S1S2)=0
-
分类号
TN305.7
[电子电信—物理电子学]
-