An efficient, convergent and enantioselective synthetic approach to the trihydroxy core structure 2 of Taurospongin A 1 is described. The featured step is a classic Wittig coupling reaction between C1-C4 aldehyde segm...An efficient, convergent and enantioselective synthetic approach to the trihydroxy core structure 2 of Taurospongin A 1 is described. The featured step is a classic Wittig coupling reaction between C1-C4 aldehyde segment 4 and C5-C10 phosphate salt segment (5).展开更多
A simple, efficient and low-cost methodology for the synthesis of α-aryl-α,β-unsaturated esters using paraformaldehyde as a source of carbon was developed. Factors that control reaction yields such as temperature, ...A simple, efficient and low-cost methodology for the synthesis of α-aryl-α,β-unsaturated esters using paraformaldehyde as a source of carbon was developed. Factors that control reaction yields such as temperature, concentration and reaction time were evaluated. A mechanism is proposed based on experimental structures of the intermediates.展开更多
The configuration of the hydroxy acid 2, a product from base-catalyzed autoxidation of 3α,5-cyclo-5α-cholestane-6-one,was established on the basis of NMR techniques and the mechanism of the formation of 2 was discus...The configuration of the hydroxy acid 2, a product from base-catalyzed autoxidation of 3α,5-cyclo-5α-cholestane-6-one,was established on the basis of NMR techniques and the mechanism of the formation of 2 was discussed.展开更多
A simple and efficient process involving the Rh(II)-catalyzed[1+1+3]annulation of diazooxindoles and vinyl azides has been developed for the synthesis of spiropyrrolidine oxindoles with potential biological activity a...A simple and efficient process involving the Rh(II)-catalyzed[1+1+3]annulation of diazooxindoles and vinyl azides has been developed for the synthesis of spiropyrrolidine oxindoles with potential biological activity and significant synthetic applications.This process involves a novel rhodium-catalyzed olefination of diazo compounds,followed by annulation with vinyl azides.This method is compatible with a broad range of substrates and affords moderate to good yields under mild reaction conditions.展开更多
Objective of this study was the investigation on the up-scaling of base-catalyzed depolymerization (BCD) of lignin to pilot plant dimension. The cleavage process was carried out in dilute alkaline solution at temperat...Objective of this study was the investigation on the up-scaling of base-catalyzed depolymerization (BCD) of lignin to pilot plant dimension. The cleavage process was carried out in dilute alkaline solution at temperatures up to 340°C and a pressure of 25 MPa in a continuously operated tubular flow reactor with throughputs up to 20 kg/h. Investigations included the proof of the feasibility of the scale-up as well as a parameter study on the cleavage of hardwood Organosolv lignin and softwood Kraft lignin within the established pilot plant. Yields and molecular compositions of the isolated product fractions BCD-oil (liquid phenolic fraction) and BCD-oligomers (solid phenolic fraction) are similar to those described in technical lab scale, showing a good scalability. Here, BCD-oils rich in phenolic monomers such as guaiacol, catechol and/or syringol were obtained with a content of up to 13.3 wt% and 14.5 wt% from Organosolv lignin and Kraft lignin, respectively. Formation of BCD-oligomers strongly depends on temperature and residence times within the reactor.展开更多
Light olefins is the incredibly important materials in chemical industry.Methanol to olefins(MTO),which provides a non-oil route for light olefins production,received considerable attention in the past decades.However...Light olefins is the incredibly important materials in chemical industry.Methanol to olefins(MTO),which provides a non-oil route for light olefins production,received considerable attention in the past decades.However,the catalyst deactivation is an inevitable feature in MTO processes,and regeneration,therefore,is one of the key steps in industrial MTO processes.Traditionally the MTO catalyst is regenerated by removing the deposited coke via air combustion,which unavoidably transforms coke into carbon dioxide and reduces the carbon utilization efficiency.Recent study shows that the coke species over MTO catalyst can be regenerated via steam,which can promote the light olefins yield as the deactivated coke species can be essentially transferred to industrially useful synthesis gas,is a promising pathway for further MTO processes development.In this work,we modelled and analyzed these two MTO regeneration methods in terms of carbon utilization efficiency and technology economics.As shown,the steam regeneration could achieve a carbon utilization efficiency of 84.31%,compared to 74.74%for air combustion regeneration.The MTO processes using steam regeneration can essentially achieve the near-zero carbon emission.In addition,light olefins production of the MTO processes using steam regeneration is 12.81%higher than that using air combustion regeneration.In this regard,steam regeneration could be considered as a potential yet promising regeneration method for further MTO processes,showing not only great environmental benefits but also competitive economic performance.展开更多
The ZSM-5 zeolite with an unusual snowflake-shaped morphology was hydrothermally synthesized for the first time,and compared with common ellipsoidal and boat-like shaped samples.These samples were characterized by N2 ...The ZSM-5 zeolite with an unusual snowflake-shaped morphology was hydrothermally synthesized for the first time,and compared with common ellipsoidal and boat-like shaped samples.These samples were characterized by N2 adsorption-desorption,X-ray fluorescence spectroscopy,scanning electron microscopy,X-ray diffraction,magic angle spinning nuclear magnetic resonance,temperature-programmed desorption of ammonia,and infrared spectroscopy of pyridine adsorption.The results suggest that the BET surface area and SiO2/Al2O3 ratio of these samples are similar,while the snowflake-shaped ZSM-5 zeolite possesses more of the(101) face,and distortion,dislocation,and asymmetry in the framework,resulting in a larger number of acid sites than the conventional samples.Catalysts for the methanol to olefin(MTO) reaction were prepared by loading Ca on the samples.The snowflake-shaped Ca/ZSM-5 zeolite exhibited excellent selectivity for total light olefin(72%) and propene(39%) in MTO.The catalytic performance influenced by the morphology can be mainly attributed to the snowflake-shaped ZSM-5 zeolite possessing distortion,dislocation,and asymmetry in the framework,and lower diffusion limitation than the conventional samples.展开更多
Fe‐based catalysts for the production of light olefins via the Fischer‐Tropsch synthesis were modi‐fied by adding a Zn promoter using both microwave‐hydrothermal and impregnation methods. The physicochemical prope...Fe‐based catalysts for the production of light olefins via the Fischer‐Tropsch synthesis were modi‐fied by adding a Zn promoter using both microwave‐hydrothermal and impregnation methods. The physicochemical properties of the resulting catalysts were determined by scanning electron mi‐croscopy, the Brunauer‐Emmett‐Teller method, X‐ray diffraction, H2 temperature‐programed re‐duction and X‐ray photoelectron spectroscopy. The results demonstrate that the addition of a Zn promoter improves both the light olefin selectivity over the catalyst and the catalyst stability. The catalysts prepared via the impregnation method, which contain greater quantities of surface ZnO, exhibit severe carbon deposition following activity trials. In contrast, those materials synthesized using the microwave‐hydrothermal approach show improved dispersion of Zn and Fe phases and decreased carbon deposition, and so exhibit better CO conversion and stability.展开更多
The density functional theory on the level of B3LYP/6-31G was empolyed to study the chain growth mechanism in polymerization process of α-linear olefin in TiCl3/AlEt2Cl catalytic system to synthesize drag reduction a...The density functional theory on the level of B3LYP/6-31G was empolyed to study the chain growth mechanism in polymerization process of α-linear olefin in TiCl3/AlEt2Cl catalytic system to synthesize drag reduction agent. Full parameter optimization without symmetry restrictions for reactants, products, the possible transition states, and intermediates was calculated. Vibration frequency was analyzed for all of stagnation points on the potential energy surface at the same theoretical level. The internal reaction coordinate was calculated from the transition states to reactants and products respectively. The results showed as flloes: (i) Coordination compounds were formed on the optimum configuration of TiCl3/AlEt2Cl.(ii) The transition states were formed. The energy di?erence between transition states and the coordination compounds was 40.687 kJ/mol. (iii) Double bond opened and Ti-C(4) bond fractured, and the polymerization was completed. The calculation results also showed that the chain growth mechanism did not essentially change with the increase of carbon atom number of α-linear olefin. From the relationship between polymerization activation energy and carbon atom number of the α-linear olefin, it can be seen that the α-linear olefin monomers with 6-10 carbon atoms had low activation energy and wide range. It was optimum to synthesize drag reduction agent by polymerization.展开更多
NiSAPO-34 and NiSAPO-34/HZSM-5 were prepared and evaluated for the performance of dimethyl ether (DME) conversion to light olefins (DTO). The processes of two-stage light olefin production, DME synthesis and the f...NiSAPO-34 and NiSAPO-34/HZSM-5 were prepared and evaluated for the performance of dimethyl ether (DME) conversion to light olefins (DTO). The processes of two-stage light olefin production, DME synthesis and the following DTO, were also investigated using biosyngas as feed gas over Cu/Zn/A1/HZSM-5 and the optimized 2%NiSAPO-34/HZSM- 5. The results indicated that adding 2%Ni to SAPO-34 did not change its topology structure, but resulted in the forming of the moderately strong acidity with decreasing acid amounts, which slightly enhanced DME conversion activity and C2=-C3= selectiw ity. Mechanically mixing 2%NiSAPO-34 with HZSM-5 at the weight ratio of 3.0 further prolonged DME conversion activity to be more than 3 h, which was due to the stable acid sites from HZSM-5. The highest selectivity to light olefins of 90.8% was achieved at 2 h time on stream. The application of the optimized 2%NiSAPO-34/HZSM-5 in the second-stage reactor for DTO reaction showed that the catalytic activity was steady for more than 5 h and light olefin yield was as high as 84.6 g/m3syngas when the biosyngas (H2/CO/CO2/N2/CH4=41.5/26.9/14.2/14.6/2.89, vol%) with low H/C ratio of 1.0 was used as feed gas.展开更多
The catalytic epoxidation of olefin was investigated on two copper complex-modified molybdenum oxides with a 3D supramolecular structure, [Cu(bipy)]4[Mo15O47].2H2O (1) and [Cu1(bix)][(Cu1bix) (δ-MoVl8O26)0....The catalytic epoxidation of olefin was investigated on two copper complex-modified molybdenum oxides with a 3D supramolecular structure, [Cu(bipy)]4[Mo15O47].2H2O (1) and [Cu1(bix)][(Cu1bix) (δ-MoVl8O26)0.5] (2) (bipy = 4,4'-bipyridine, bix = 1,4-bis(imidazole-1-ylmethyl)benzene). Both compounds were catalytically active and stable for the epoxidation of cyclooctene, 1-octene, and styrene with tert-butyl hydroperoxide (t-BuOOH) as oxidant. The excellent catalytic performance was attributed to the presence of stable coordination bonds between the molybdenum oxide and copper complex, which resulted in the formation of easily accessible Mo species with high electropositivity. In addition, the copper complex also acted as an active site for the activation of t-BuOOH, thus im- proving these copper complex-modified polyoxometalates.展开更多
Low-carbon light olefins are the basic feedstocks for the petrochemical industry. Catalytic cracking of crude bio-oil and its model compounds (including methanol, ethanol, acetic acid, acetone, and phenol) to light ...Low-carbon light olefins are the basic feedstocks for the petrochemical industry. Catalytic cracking of crude bio-oil and its model compounds (including methanol, ethanol, acetic acid, acetone, and phenol) to light olefins were performed by using the La/HZSM-5 catalyst. The highest olefins yield from crude bio-oil reached 0.19 kg/(kg crude bio-oil). The reaction conditions including temperature, weight hourly space velocity, and addition of La into the HZSM-5 zeolite can be used to control both olefins yield and selectivity. Moderate adjusting the acidity with a suitable ratio between the strong acid and weak acid sites through adding La to the zeolite effectively enhanced the olefins selectivity and improved the catalyst stability. The production of light olefins from crude bio-oil is closely associated with the chemical composition and hydrogen to carbon effective ratios of feedstock. The comparison between the catalytic cracking and pyrolysis of bio-oil was studied. The mechanism of the bio-oil conversion to light olefins was also discussed.展开更多
Most olefins (e.g., ethylene and propylene) will continue to be produced through steam cracking (SC) ofhydrocarbons in the coming decade. In an uncertain commodity market, the chemical industry is investingvery li...Most olefins (e.g., ethylene and propylene) will continue to be produced through steam cracking (SC) ofhydrocarbons in the coming decade. In an uncertain commodity market, the chemical industry is investingvery little in alternative technologies and feedstocks because of their current lack of economic viability,despite decreasing crude oil reserves and the recognition of global warming. In this perspective, some of themost promising alternatives are compared with the conventional SC process, and the major bottlenecks ofeach of the competing processes are highlighted. These technologies emerge especially from the abundanceof cheap propane, ethane, and methane from shale gas and stranded gas. From an economic point of view,methane is an interesting starting material, if chemicals can be produced from it. The huge availability ofcrude oil and the expected substantial decline in the demand for fuels imply that the future for proventechnologies such as Fischer-Tropsch synthesis (FFS) or methanol to gasoline is not bright. The abundance ofcheap ethane and the large availability of crude oil, on the other hand, have caused the SC industry to shiftto these two extremes, making room for the on-purpose production of light olefins, such as by the catalyticdehydrogenation of orooane.展开更多
A systematic study was carried out to investigate the promotion effect of manganese on the performance of a coprecipitated iron-manganese bimetallic catalyst for the light olefins synthesis from syngas. The catalyst s...A systematic study was carried out to investigate the promotion effect of manganese on the performance of a coprecipitated iron-manganese bimetallic catalyst for the light olefins synthesis from syngas. The catalyst samples were characterized by N2 physisorption, transmis- sion electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (XRD), Mossbauer spectroscopy, H2- differential thermogravimetric analysis (H2-DTG), CO temperature-programmed reduction (CO-TPR) and CO2 temperature-programmed des- orption (CO2-TPD). The Fischer-Tropsch synthesis (FTS) performance of the catalyst was measured at 1.5 MPa, 250 ℃ and syngas with H2/CO ratio of 2.0. The characterization results indicated that the addition of manganese decreases the catalyst crystallite size, and improves the catalyst BET surface area and pore volume. The presence of manganese suppresses the catalyst reduction and carburization in H2, CO and syngas, respectively. The addition of manganese improves the catalytic activity of water-gas shift reaction and suppresses the oxidation of iron carbides in the FTS reaction. The incorporation of manganese improves the catalyst surface basicity and results in a significant improvement in the selectivities to light olefins and heavy hydrocarbons (C5+), and furthermore an inhibition of methane formation in FTS. The pure iron catalyst (Mn-00) has the highest initial FTS catalytic activity (65%) and the lowest selectivity (17.35 wt%) to light olefins (C2=-C4=). The addition of an appropriate amount of manganese can improve the catalyst FTS activity.展开更多
The modified Ce-SAPO-34 catalysts were prepared with three methods, i.e., the liquid ion exchange with air calcination, impregnation with air calcination and impregnation with steam calcination methods. The catalytic ...The modified Ce-SAPO-34 catalysts were prepared with three methods, i.e., the liquid ion exchange with air calcination, impregnation with air calcination and impregnation with steam calcination methods. The catalytic performances of the catalysts for methanol to olefins were investigated. The properties of the catalysts were characterized using XRD, BET, XRF, FT-IR and NH3-TPD. The results indicated that compared to the SAPO-34 catalyst the catalyst prepared with the impregnation and air calcination prolonged the lifetime by 40 min and improved the selectivity to ethylene by 5% (mol) and the catalyst prepared with the impregnation and steam calcination showed the best modification effect, prolonging the lifetime by 70 min and improving the ethylene selectivity by 10% (mol). The catalyst prepared with the liquid ion exchange showed similar behaviour as the SAPO-34 catalyst. It was verified that the porous structure and surface acidity of these catalysts determined their catalytic behaviors.展开更多
ZSM-5 zeolite catalyst modified by a trace of metal cations shows high activity and high selectivity for the reaction of methanol to olefins (MTO), but it inclines to deactivate during the reaction. In this paper, t...ZSM-5 zeolite catalyst modified by a trace of metal cations shows high activity and high selectivity for the reaction of methanol to olefins (MTO), but it inclines to deactivate during the reaction. In this paper, the mechanism of the catalyst deactivation and the regeneration method were studied by X-ray diffraction (XRD), N2 adsorption-desorption, infrared spectra (IR), and infrared spectra coupled with NH3 molecular probes (IR-NH3). These characterizations indicated that coke formation was the main reason for the catalyst deactivation. To regenerate the deactivated catalyst, two methods, i.e., calcination and methanol leaching, were used. N2 adsorption-desorption, IR and IR-NH3 characteriza-tions showed that both methods can eliminate coke deposited on the catalyst and make the catalyst reactivated. XRD showed that the structure of the catalyst did not change after regeneration. Interestingly, the regenerated catalyst even showed better catalytic performance of the MTO reaction than the fresh one. Besides, the calcination regeneration can eliminate coke more completely, however, the methanol leaching method can be more easily carried out in situ in the reactor.展开更多
文摘An efficient, convergent and enantioselective synthetic approach to the trihydroxy core structure 2 of Taurospongin A 1 is described. The featured step is a classic Wittig coupling reaction between C1-C4 aldehyde segment 4 and C5-C10 phosphate salt segment (5).
文摘A simple, efficient and low-cost methodology for the synthesis of α-aryl-α,β-unsaturated esters using paraformaldehyde as a source of carbon was developed. Factors that control reaction yields such as temperature, concentration and reaction time were evaluated. A mechanism is proposed based on experimental structures of the intermediates.
文摘The configuration of the hydroxy acid 2, a product from base-catalyzed autoxidation of 3α,5-cyclo-5α-cholestane-6-one,was established on the basis of NMR techniques and the mechanism of the formation of 2 was discussed.
基金supported by the National Natural Science Foundation of China(21572225)~~
文摘A simple and efficient process involving the Rh(II)-catalyzed[1+1+3]annulation of diazooxindoles and vinyl azides has been developed for the synthesis of spiropyrrolidine oxindoles with potential biological activity and significant synthetic applications.This process involves a novel rhodium-catalyzed olefination of diazo compounds,followed by annulation with vinyl azides.This method is compatible with a broad range of substrates and affords moderate to good yields under mild reaction conditions.
基金the Federal Ministry of Food and Agriculture(BMEL)and the“Fachagentur Nachwachsende Rohstoffee.V.”(FNR)for the financial support of the project“Lignoplast”(support code 22014212).
文摘Objective of this study was the investigation on the up-scaling of base-catalyzed depolymerization (BCD) of lignin to pilot plant dimension. The cleavage process was carried out in dilute alkaline solution at temperatures up to 340°C and a pressure of 25 MPa in a continuously operated tubular flow reactor with throughputs up to 20 kg/h. Investigations included the proof of the feasibility of the scale-up as well as a parameter study on the cleavage of hardwood Organosolv lignin and softwood Kraft lignin within the established pilot plant. Yields and molecular compositions of the isolated product fractions BCD-oil (liquid phenolic fraction) and BCD-oligomers (solid phenolic fraction) are similar to those described in technical lab scale, showing a good scalability. Here, BCD-oils rich in phenolic monomers such as guaiacol, catechol and/or syringol were obtained with a content of up to 13.3 wt% and 14.5 wt% from Organosolv lignin and Kraft lignin, respectively. Formation of BCD-oligomers strongly depends on temperature and residence times within the reactor.
基金the financial support from the Strategic Priority Research Program of Chinese Academy of Sciences(XDA21010100)。
文摘Light olefins is the incredibly important materials in chemical industry.Methanol to olefins(MTO),which provides a non-oil route for light olefins production,received considerable attention in the past decades.However,the catalyst deactivation is an inevitable feature in MTO processes,and regeneration,therefore,is one of the key steps in industrial MTO processes.Traditionally the MTO catalyst is regenerated by removing the deposited coke via air combustion,which unavoidably transforms coke into carbon dioxide and reduces the carbon utilization efficiency.Recent study shows that the coke species over MTO catalyst can be regenerated via steam,which can promote the light olefins yield as the deactivated coke species can be essentially transferred to industrially useful synthesis gas,is a promising pathway for further MTO processes development.In this work,we modelled and analyzed these two MTO regeneration methods in terms of carbon utilization efficiency and technology economics.As shown,the steam regeneration could achieve a carbon utilization efficiency of 84.31%,compared to 74.74%for air combustion regeneration.The MTO processes using steam regeneration can essentially achieve the near-zero carbon emission.In addition,light olefins production of the MTO processes using steam regeneration is 12.81%higher than that using air combustion regeneration.In this regard,steam regeneration could be considered as a potential yet promising regeneration method for further MTO processes,showing not only great environmental benefits but also competitive economic performance.
基金Synfuels China Co.Ltd.for the financial and equipments support
文摘The ZSM-5 zeolite with an unusual snowflake-shaped morphology was hydrothermally synthesized for the first time,and compared with common ellipsoidal and boat-like shaped samples.These samples were characterized by N2 adsorption-desorption,X-ray fluorescence spectroscopy,scanning electron microscopy,X-ray diffraction,magic angle spinning nuclear magnetic resonance,temperature-programmed desorption of ammonia,and infrared spectroscopy of pyridine adsorption.The results suggest that the BET surface area and SiO2/Al2O3 ratio of these samples are similar,while the snowflake-shaped ZSM-5 zeolite possesses more of the(101) face,and distortion,dislocation,and asymmetry in the framework,resulting in a larger number of acid sites than the conventional samples.Catalysts for the methanol to olefin(MTO) reaction were prepared by loading Ca on the samples.The snowflake-shaped Ca/ZSM-5 zeolite exhibited excellent selectivity for total light olefin(72%) and propene(39%) in MTO.The catalytic performance influenced by the morphology can be mainly attributed to the snowflake-shaped ZSM-5 zeolite possessing distortion,dislocation,and asymmetry in the framework,and lower diffusion limitation than the conventional samples.
基金supported by the Key Project of Natural Science Foundation of Ningxia(NZ13010)the National Natural Science Foundation of China(21366025)~~
文摘Fe‐based catalysts for the production of light olefins via the Fischer‐Tropsch synthesis were modi‐fied by adding a Zn promoter using both microwave‐hydrothermal and impregnation methods. The physicochemical properties of the resulting catalysts were determined by scanning electron mi‐croscopy, the Brunauer‐Emmett‐Teller method, X‐ray diffraction, H2 temperature‐programed re‐duction and X‐ray photoelectron spectroscopy. The results demonstrate that the addition of a Zn promoter improves both the light olefin selectivity over the catalyst and the catalyst stability. The catalysts prepared via the impregnation method, which contain greater quantities of surface ZnO, exhibit severe carbon deposition following activity trials. In contrast, those materials synthesized using the microwave‐hydrothermal approach show improved dispersion of Zn and Fe phases and decreased carbon deposition, and so exhibit better CO conversion and stability.
文摘The density functional theory on the level of B3LYP/6-31G was empolyed to study the chain growth mechanism in polymerization process of α-linear olefin in TiCl3/AlEt2Cl catalytic system to synthesize drag reduction agent. Full parameter optimization without symmetry restrictions for reactants, products, the possible transition states, and intermediates was calculated. Vibration frequency was analyzed for all of stagnation points on the potential energy surface at the same theoretical level. The internal reaction coordinate was calculated from the transition states to reactants and products respectively. The results showed as flloes: (i) Coordination compounds were formed on the optimum configuration of TiCl3/AlEt2Cl.(ii) The transition states were formed. The energy di?erence between transition states and the coordination compounds was 40.687 kJ/mol. (iii) Double bond opened and Ti-C(4) bond fractured, and the polymerization was completed. The calculation results also showed that the chain growth mechanism did not essentially change with the increase of carbon atom number of α-linear olefin. From the relationship between polymerization activation energy and carbon atom number of the α-linear olefin, it can be seen that the α-linear olefin monomers with 6-10 carbon atoms had low activation energy and wide range. It was optimum to synthesize drag reduction agent by polymerization.
基金ACKNOWLEDGM ENTS This work was supported by the National Natural Science Foundation of China (No.51006110, No.51276183, and No.51036006), the National Natural Research Foundation of China/Japan Science and Technology Agency (No.51161140331), and National Key Basic Research Program 973 Project Founded by MOST of China (No.2013CB228105).
文摘NiSAPO-34 and NiSAPO-34/HZSM-5 were prepared and evaluated for the performance of dimethyl ether (DME) conversion to light olefins (DTO). The processes of two-stage light olefin production, DME synthesis and the following DTO, were also investigated using biosyngas as feed gas over Cu/Zn/A1/HZSM-5 and the optimized 2%NiSAPO-34/HZSM- 5. The results indicated that adding 2%Ni to SAPO-34 did not change its topology structure, but resulted in the forming of the moderately strong acidity with decreasing acid amounts, which slightly enhanced DME conversion activity and C2=-C3= selectiw ity. Mechanically mixing 2%NiSAPO-34 with HZSM-5 at the weight ratio of 3.0 further prolonged DME conversion activity to be more than 3 h, which was due to the stable acid sites from HZSM-5. The highest selectivity to light olefins of 90.8% was achieved at 2 h time on stream. The application of the optimized 2%NiSAPO-34/HZSM-5 in the second-stage reactor for DTO reaction showed that the catalytic activity was steady for more than 5 h and light olefin yield was as high as 84.6 g/m3syngas when the biosyngas (H2/CO/CO2/N2/CH4=41.5/26.9/14.2/14.6/2.89, vol%) with low H/C ratio of 1.0 was used as feed gas.
基金supported by the National Natural Science Foundation of China(21173100 and 21320102001)~~
文摘The catalytic epoxidation of olefin was investigated on two copper complex-modified molybdenum oxides with a 3D supramolecular structure, [Cu(bipy)]4[Mo15O47].2H2O (1) and [Cu1(bix)][(Cu1bix) (δ-MoVl8O26)0.5] (2) (bipy = 4,4'-bipyridine, bix = 1,4-bis(imidazole-1-ylmethyl)benzene). Both compounds were catalytically active and stable for the epoxidation of cyclooctene, 1-octene, and styrene with tert-butyl hydroperoxide (t-BuOOH) as oxidant. The excellent catalytic performance was attributed to the presence of stable coordination bonds between the molybdenum oxide and copper complex, which resulted in the formation of easily accessible Mo species with high electropositivity. In addition, the copper complex also acted as an active site for the activation of t-BuOOH, thus im- proving these copper complex-modified polyoxometalates.
基金This work is supported by the National Key Basic Program of China (No.2013CB228105) and the National Natural Science Foundation of China (No.51161140331).
文摘Low-carbon light olefins are the basic feedstocks for the petrochemical industry. Catalytic cracking of crude bio-oil and its model compounds (including methanol, ethanol, acetic acid, acetone, and phenol) to light olefins were performed by using the La/HZSM-5 catalyst. The highest olefins yield from crude bio-oil reached 0.19 kg/(kg crude bio-oil). The reaction conditions including temperature, weight hourly space velocity, and addition of La into the HZSM-5 zeolite can be used to control both olefins yield and selectivity. Moderate adjusting the acidity with a suitable ratio between the strong acid and weak acid sites through adding La to the zeolite effectively enhanced the olefins selectivity and improved the catalyst stability. The production of light olefins from crude bio-oil is closely associated with the chemical composition and hydrogen to carbon effective ratios of feedstock. The comparison between the catalytic cracking and pyrolysis of bio-oil was studied. The mechanism of the bio-oil conversion to light olefins was also discussed.
基金supported by the Long-Term Structural Methusalem Funding (BOF09/01M00409)by the Flemish Government and the European Union’s Horizon H2020 Programme (H2020SPIRE-0 4-2016) under grant agreement No. 72370 6+2 种基金financial support from SABIC Geleenfinancial support from a doctoral fellowship from the Fund for Scientific Research Flanders (FWO)
文摘Most olefins (e.g., ethylene and propylene) will continue to be produced through steam cracking (SC) ofhydrocarbons in the coming decade. In an uncertain commodity market, the chemical industry is investingvery little in alternative technologies and feedstocks because of their current lack of economic viability,despite decreasing crude oil reserves and the recognition of global warming. In this perspective, some of themost promising alternatives are compared with the conventional SC process, and the major bottlenecks ofeach of the competing processes are highlighted. These technologies emerge especially from the abundanceof cheap propane, ethane, and methane from shale gas and stranded gas. From an economic point of view,methane is an interesting starting material, if chemicals can be produced from it. The huge availability ofcrude oil and the expected substantial decline in the demand for fuels imply that the future for proventechnologies such as Fischer-Tropsch synthesis (FFS) or methanol to gasoline is not bright. The abundance ofcheap ethane and the large availability of crude oil, on the other hand, have caused the SC industry to shiftto these two extremes, making room for the on-purpose production of light olefins, such as by the catalyticdehydrogenation of orooane.
基金supported by Natural Science Foundation of Chongqing Three Gorges University (12ZD14)Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University
文摘A systematic study was carried out to investigate the promotion effect of manganese on the performance of a coprecipitated iron-manganese bimetallic catalyst for the light olefins synthesis from syngas. The catalyst samples were characterized by N2 physisorption, transmis- sion electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (XRD), Mossbauer spectroscopy, H2- differential thermogravimetric analysis (H2-DTG), CO temperature-programmed reduction (CO-TPR) and CO2 temperature-programmed des- orption (CO2-TPD). The Fischer-Tropsch synthesis (FTS) performance of the catalyst was measured at 1.5 MPa, 250 ℃ and syngas with H2/CO ratio of 2.0. The characterization results indicated that the addition of manganese decreases the catalyst crystallite size, and improves the catalyst BET surface area and pore volume. The presence of manganese suppresses the catalyst reduction and carburization in H2, CO and syngas, respectively. The addition of manganese improves the catalytic activity of water-gas shift reaction and suppresses the oxidation of iron carbides in the FTS reaction. The incorporation of manganese improves the catalyst surface basicity and results in a significant improvement in the selectivities to light olefins and heavy hydrocarbons (C5+), and furthermore an inhibition of methane formation in FTS. The pure iron catalyst (Mn-00) has the highest initial FTS catalytic activity (65%) and the lowest selectivity (17.35 wt%) to light olefins (C2=-C4=). The addition of an appropriate amount of manganese can improve the catalyst FTS activity.
基金supported by the National Key Basic Research Development Program of China (NO: 2006CB202503)
文摘The modified Ce-SAPO-34 catalysts were prepared with three methods, i.e., the liquid ion exchange with air calcination, impregnation with air calcination and impregnation with steam calcination methods. The catalytic performances of the catalysts for methanol to olefins were investigated. The properties of the catalysts were characterized using XRD, BET, XRF, FT-IR and NH3-TPD. The results indicated that compared to the SAPO-34 catalyst the catalyst prepared with the impregnation and air calcination prolonged the lifetime by 40 min and improved the selectivity to ethylene by 5% (mol) and the catalyst prepared with the impregnation and steam calcination showed the best modification effect, prolonging the lifetime by 70 min and improving the ethylene selectivity by 10% (mol). The catalyst prepared with the liquid ion exchange showed similar behaviour as the SAPO-34 catalyst. It was verified that the porous structure and surface acidity of these catalysts determined their catalytic behaviors.
基金supported by the Natural Science Foundation of China (21306046)the Open Project of State Key Laboratory of Chemical Engineering (SKL-Che-15C03)+2 种基金the Fundamental Research Funds for the Central Universities (WA1514013)the 111 Project of Ministry of Education of China (B08021)supported by the China Scholarship Council (CSC) for the research at Norwegian University of Science and Technology (NTNU)
基金supported by the Research Fund from the China Petroleum & Chemical Corporation (Grant No.305025)the National High Technology Research and Development Program of Hainan under Grant No.509013
文摘ZSM-5 zeolite catalyst modified by a trace of metal cations shows high activity and high selectivity for the reaction of methanol to olefins (MTO), but it inclines to deactivate during the reaction. In this paper, the mechanism of the catalyst deactivation and the regeneration method were studied by X-ray diffraction (XRD), N2 adsorption-desorption, infrared spectra (IR), and infrared spectra coupled with NH3 molecular probes (IR-NH3). These characterizations indicated that coke formation was the main reason for the catalyst deactivation. To regenerate the deactivated catalyst, two methods, i.e., calcination and methanol leaching, were used. N2 adsorption-desorption, IR and IR-NH3 characteriza-tions showed that both methods can eliminate coke deposited on the catalyst and make the catalyst reactivated. XRD showed that the structure of the catalyst did not change after regeneration. Interestingly, the regenerated catalyst even showed better catalytic performance of the MTO reaction than the fresh one. Besides, the calcination regeneration can eliminate coke more completely, however, the methanol leaching method can be more easily carried out in situ in the reactor.