A numerical wave load model based on two-phase(water-air) Reynolds-Averaged Navier Stokes(RANS) type equations is used to evaluate hydrodynamic forces exerted on flatted-bottom seafloor mining tool during its entering...A numerical wave load model based on two-phase(water-air) Reynolds-Averaged Navier Stokes(RANS) type equations is used to evaluate hydrodynamic forces exerted on flatted-bottom seafloor mining tool during its entering ocean waves of deploying process.The discretization of the RANS equations is achieved by a finite volume approach(FV).The volume of fluid method(VOF) is employed to track the complicated free surface.A numerical wave tank is built to generate the ocean waves which are suitable for deploying seafloor mining tool.A typical deploying condition is employed to reflect the process of flatted-bottom body impacting with waves,and the pressure distribution of bottom is also presented.Four different lowering velocities are applied to obtain the time histories of maximum pressure of bottom,and it can be concluded that the pressure coefficient decreases with water velocity increasing,which is similar with ordinary water entry case.The numerical results clearly demonstrate the characteristics of flatted-bottom body entering ocean waves.展开更多
In this study, we numerically investigated the nonlinear focused wave group action on a truncated surface-piercing structure, and developed a two-dimensional fully nonlinear numerical tank using the higher-order bound...In this study, we numerically investigated the nonlinear focused wave group action on a truncated surface-piercing structure, and developed a two-dimensional fully nonlinear numerical tank using the higher-order boundary element method. We determined the amplitude of the wave components of the focused wave group based on the JONSWAP wave spectrum. We discuss the effects of the presence of a surface-piercing structure on the characteristics of the focused wave group and find that the location of the structure does not evidently change the focal location or focal time of the focused wave group. The largest amplitudes of the run-up and horizontal force on the structure occur when the front surface of the structure is at the focal location. The critical draught and breadth of the structure occur when the wave run-up reaches its maximum along the structure.展开更多
The offshore wind energy presents a good solution for the green energy demand.The floating offshore wind turbine(FOWT)is one of the most potential choices of the basement construction for offshore wind turbines in dee...The offshore wind energy presents a good solution for the green energy demand.The floating offshore wind turbine(FOWT)is one of the most potential choices of the basement construction for offshore wind turbines in deep water.Hydrodynamic performance of multi-column tension-leg-type floating wind turbine is investigated numerically,particularly at its motion responses.Based on the Navier-Stokes equations and the volume of fluid method,a numerical wave tank(NWT)is established to simulate the floating structure system.The analytical relaxation method is adopted to generate regular waves.Dynamic mesh method is used to calculate the motion of the floating body.Hydrostatic decay of motion and hydrodynamic forces in the regular wave are provided.The computation results agree with the experimental data available.Numerical results show that the wave force on the lower pontoon of the system is the greatest while that on the center column is the smallest.Detailed information about the changes of the wave forces on different elements of the floating system is discussed.展开更多
Objective To observe the impact of combined systolic blood pressure and body mass index(BMI)on the risk of new-onset atrial fibrillation.Methods The participants who participated the health examination between July 20...Objective To observe the impact of combined systolic blood pressure and body mass index(BMI)on the risk of new-onset atrial fibrillation.Methods The participants who participated the health examination between July 2006 and October 2007 at Kailuan medical group and had no history of atrial fibrillation were selected as the observation cohort.The second,the third and展开更多
Nonlinear wave-body interactions for a stationary surface-piercing body in water of finite depth with fiat and sloping bottoms are simulated in a two-dimensional numerical wave tank, which is constructed mainly based ...Nonlinear wave-body interactions for a stationary surface-piercing body in water of finite depth with fiat and sloping bottoms are simulated in a two-dimensional numerical wave tank, which is constructed mainly based on the spatially averaged Navier-Stokes equations with the k- ε model for simulating the turbulence. The equations are discretized based on the finite volume method and the scheme of the pressure implicit splitting of operators is employed to solve the Navier-Stokes equations. By using the force time histories, the mean and higher-harmonic force components are calculated. The computational results are shown to be in good agreement with experimental and numerical results of other researchers. Then, the horizontal force, the vertical force and the moment on the surface-piercing body under nonlinear regular waves with flat and sloping bottoms are obtained. The results indicate that the bottom topographies have a significant influence on the wave loads on the surface-piercing body.展开更多
Objective To investigate the changes of neuropeptide Y(NPY) ,leptin,body weight and their relationship in schizophrenics with clozapine and haloperidol treatment. Methods Thirty schizophrenic patients
基金Project(51305463)supported by National Natural Science Foundation of ChinaProject(2012QNZT01601005125)supported by Free Exploration Plan of Central South University,ChinaProject supported by Postdoctoral Foundation of Central South university,China
文摘A numerical wave load model based on two-phase(water-air) Reynolds-Averaged Navier Stokes(RANS) type equations is used to evaluate hydrodynamic forces exerted on flatted-bottom seafloor mining tool during its entering ocean waves of deploying process.The discretization of the RANS equations is achieved by a finite volume approach(FV).The volume of fluid method(VOF) is employed to track the complicated free surface.A numerical wave tank is built to generate the ocean waves which are suitable for deploying seafloor mining tool.A typical deploying condition is employed to reflect the process of flatted-bottom body impacting with waves,and the pressure distribution of bottom is also presented.Four different lowering velocities are applied to obtain the time histories of maximum pressure of bottom,and it can be concluded that the pressure coefficient decreases with water velocity increasing,which is similar with ordinary water entry case.The numerical results clearly demonstrate the characteristics of flatted-bottom body entering ocean waves.
基金the National Key R&D Program of China (Grant No.2016YFE0200100)the National Natural Science Foundation of China (Nos.51709038,and 51739010)the Fundamental Research Funds for the Central Universities (No.DUT16RC(3)113).
文摘In this study, we numerically investigated the nonlinear focused wave group action on a truncated surface-piercing structure, and developed a two-dimensional fully nonlinear numerical tank using the higher-order boundary element method. We determined the amplitude of the wave components of the focused wave group based on the JONSWAP wave spectrum. We discuss the effects of the presence of a surface-piercing structure on the characteristics of the focused wave group and find that the location of the structure does not evidently change the focal location or focal time of the focused wave group. The largest amplitudes of the run-up and horizontal force on the structure occur when the front surface of the structure is at the focal location. The critical draught and breadth of the structure occur when the wave run-up reaches its maximum along the structure.
基金supported by the National Basic Research Program of China(″973″Program)(No.2014CB-046200)the National Natural Science Foundation of China(No.11572196)
文摘The offshore wind energy presents a good solution for the green energy demand.The floating offshore wind turbine(FOWT)is one of the most potential choices of the basement construction for offshore wind turbines in deep water.Hydrodynamic performance of multi-column tension-leg-type floating wind turbine is investigated numerically,particularly at its motion responses.Based on the Navier-Stokes equations and the volume of fluid method,a numerical wave tank(NWT)is established to simulate the floating structure system.The analytical relaxation method is adopted to generate regular waves.Dynamic mesh method is used to calculate the motion of the floating body.Hydrostatic decay of motion and hydrodynamic forces in the regular wave are provided.The computation results agree with the experimental data available.Numerical results show that the wave force on the lower pontoon of the system is the greatest while that on the center column is the smallest.Detailed information about the changes of the wave forces on different elements of the floating system is discussed.
文摘Objective To observe the impact of combined systolic blood pressure and body mass index(BMI)on the risk of new-onset atrial fibrillation.Methods The participants who participated the health examination between July 2006 and October 2007 at Kailuan medical group and had no history of atrial fibrillation were selected as the observation cohort.The second,the third and
基金Project supported by the National Natural Science Foundation of China (Grant No. 40776057)the Knowledge Innovation Program of Chinese Academy of Sciences (Grant Nos. KJCX2-YW-L07,KZCX2-YW-212-2)
文摘Nonlinear wave-body interactions for a stationary surface-piercing body in water of finite depth with fiat and sloping bottoms are simulated in a two-dimensional numerical wave tank, which is constructed mainly based on the spatially averaged Navier-Stokes equations with the k- ε model for simulating the turbulence. The equations are discretized based on the finite volume method and the scheme of the pressure implicit splitting of operators is employed to solve the Navier-Stokes equations. By using the force time histories, the mean and higher-harmonic force components are calculated. The computational results are shown to be in good agreement with experimental and numerical results of other researchers. Then, the horizontal force, the vertical force and the moment on the surface-piercing body under nonlinear regular waves with flat and sloping bottoms are obtained. The results indicate that the bottom topographies have a significant influence on the wave loads on the surface-piercing body.
文摘Objective To investigate the changes of neuropeptide Y(NPY) ,leptin,body weight and their relationship in schizophrenics with clozapine and haloperidol treatment. Methods Thirty schizophrenic patients