Objective:To evaluate the therapeutic effect of recombinant bovine basic fibroblast growth factor(rbFGF)eye gel combined with tobramycin-dexamethasone(TOB-Dex)eye drops on dry eye syndrome(DES)after cataract surgery.M...Objective:To evaluate the therapeutic effect of recombinant bovine basic fibroblast growth factor(rbFGF)eye gel combined with tobramycin-dexamethasone(TOB-Dex)eye drops on dry eye syndrome(DES)after cataract surgery.Methods:86 patients with DES after cataract surgery,admitted from November 2021 to November 2023,were randomly divided into groups.The observation group included 43 patients treated with rbFGF eye gel combined with TOB-Dex eye drops.The reference group included 43 patients treated with TOB-Dex eye drops alone.Multiple indicators,including total effective rate and clinical symptom scores,were compared between the two groups.Results:The total effective rate in the observation group was higher than in the reference group(P<0.05).Before treatment,there were no differences in clinical symptom scores,serum factors,or disease severity scores between the two groups(P>0.05).Three weeks after treatment,the observation group had lower clinical symptom scores,serum factors,and disease severity scores compared to the reference group(P<0.05).The adverse reaction rate in the observation group was lower than in the reference group(P<0.05).Conclusion:rbFGF eye gel combined with TOB-Dex eye drops can improve the clinical efficacy for patients with DES after cataract surgery,alleviate disease symptoms,reduce inflammatory responses,and have fewer adverse reactions.展开更多
Diabetes affects about 422 million people worldwide,causing 1.5 million deaths each year.However,the incidence of diabetes is increasing,including several types of diabetes.Type 1 diabetes(5%-10%of diabetic cases)and ...Diabetes affects about 422 million people worldwide,causing 1.5 million deaths each year.However,the incidence of diabetes is increasing,including several types of diabetes.Type 1 diabetes(5%-10%of diabetic cases)and type 2 diabetes(90%-95%of diabetic cases)are the main types of diabetes in the clinic.Accumulating evidence shows that the fibroblast growth factor(FGF)family plays important roles in many metabolic disorders,including type 1 and type 2 diabetes.FGF consists of 23 family members(FGF-1-23)in humans.Here,we review current findings of FGFs in the treatment of diabetes and management of diabetic complications.Some FGFs(e.g.,FGF-15,FGF-19,and FGF-21)have been broadly investigated in preclinical studies for the diagnosis and treatment of diabetes,and their therapeutic roles in diabetes are currently under investigation in clinical trials.Overall,the roles of FGFs in diabetes and diabetic complications are involved in numerous processes.First,FGF intervention can prevent high-fat diet-induced obesity and insulin resistance and reduce the levels of fasting blood glucose and triglycerides by regulating lipolysis in adipose tissues and hepatic glucose production.Second,modulation of FGF expression can inhibit renal and cardiac fibrosis by regulating the expression of extracellular matrix components,promote diabetic wound healing process and bone repair,and inhibit cancer cell proliferation and migration.Finally,FGFs can regulate the activation of glucoseexcited neurons and the expression of thermogenic genes.展开更多
BACKGROUND Fibroblast growth factor 21(FGF21),primarily secreted by the pancreas,liver,and adipose tissues,plays a pivotal role in regulating glucose and lipid metabolism.Acute pancreatitis(AP)is a common inflammatory...BACKGROUND Fibroblast growth factor 21(FGF21),primarily secreted by the pancreas,liver,and adipose tissues,plays a pivotal role in regulating glucose and lipid metabolism.Acute pancreatitis(AP)is a common inflammatory disease with specific clinical manifestations.Many patients with diabetes present with concurrent inflammatory symptoms.Diabetes exacerbates intestinal permeability and intestinal inflammation,thus leading to the progression to AP.Our previous study indicated that FGF21 significantly attenuated susceptibility to AP in mice.AIM To investigate the potential protective role of FGF21 against AP in diabetic mice.METHODS In the present study,a mouse model of AP was established in diabetic(db)/db diabetic mice through ceruletide injections.Thereafter,the protective effects of recombinant FGF21 protein against AP were evaluated,with an emphasis on examining serum amylase(AMS)levels and pancreatic and intestinal inflammatory cytokines[interleukin(IL)-6,tumor necrosis factor-alpha(TNF-),and intestinal IL-1β].Additionally,the impact of this treatment on the histopathologic changes of the pancreas and small intestinal was examined to elucidate the role of FGF21 in diabetic mice with AP.An antibiotic(Abx)cocktail was administered in combination with FGF21 therapy to investigate whether the effect of FGF21 on AP in diabetic mice with AP was mediated through the modulation of the gut microbiota. Subsequently, thePhylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt), a bioinformaticssoftware package, was used to predict different pathways between the groups and to explore the potentialmechanisms by which the gut microbiota influenced the protective effect of FGF21.RESULTSThe results indicated that FGF21 notably diminished the levels of serum AMS (944.5 ± 15.9 vs 1732 ± 83.9, P < 0.01)and inflammatory factors including IL-6 (0.2400 ± 0.55 vs 1.233 ± 0.053, P < 0.01), TNF- (0.7067 ± 0.22 vs 1.433 ±0.051, P < 0.01), and IL-1β (1.377 ± 0.069 vs 0.3328 ± 0.02542, P < 0.01) in diabetic mice with AP. Moreover, notablesigns of recovery were observed in the pancreatic structure of the mice. The histologic evidence of inflammation inthe small intestine, including edema and villous damage, was significantly alleviated. FGF21 also significantlyaltered the composition of the gut microbiota, reestablishing the Bacteroidetes/Firmicutes ratio. Upon treatment withan Abx cocktail to deplete the gut microbiota, the FGF21 + Abx group showed lower levels of serum AMS (0.9328 ±0.075 vs 0.2249 ± 0.023, P < 0.01) and inflammatory factors (1.083 ± 0.12 vs 0.2799 ± 0.032, p < 0.01) than the FGF21group. Furthermore, the FGF21 + Abx group exhibited diminished injury to the pancreatic and small intestinaltissues, accompanied by a significant decrease in blood glucose levels (17.50 ± 1.1 vs 9.817 ± 0.69 mmol/L, P <0.001). These findings underscored the superior protective effects of the combination therapy involving an Abxcocktail with FGF21 over the FGF21 treatment alone in diabetic mice with AP. The gut microbiota compositionacross different groups was further characterized, and a differential expression analysis of gene functions wasundertaken using the PICRUSt2 prediction method. These findings suggested that FGF21 could potentially confertherapeutic effects on diabetic mice with AP by modulating the sulfate reduction I pathway and the superpathwayof n-acetylceramide degradation in the gut microbiota.CONCLUSION This study reveals the potential of FGF21 in improving pancreatic and intestinal damage recovery, reducing bloodglucose levels, and reshaping gut microbiota composition in diabetic mice with AP. Notably, the protective effectsof FGF21 are augmented when combined with the Abx cocktail.展开更多
Objective: To evaluate the efficacy and the indication of basic fibroblast growth factor (bFGF) in the treatment of exposure of orbital implants. Design: Retrospective and observational case series. Methods: We review...Objective: To evaluate the efficacy and the indication of basic fibroblast growth factor (bFGF) in the treatment of exposure of orbital implants. Design: Retrospective and observational case series. Methods: We reviewed 41 patients (41 eyes) suffering exposure of orbital implants from Jan. 2000 to June 2006. The study group patients with mild exposure received com-bined treatment with bFGF and antibiotic drops, and while the control group patients with mild exposure were treated with anti-biotic drops only. The study group patients with moderate and severe exposure received combined treatment with bFGF and antibiotic drops, and after 2 months they were subjected to amniotic membrane transplantation, while the control group patients with moderate and severe exposure underwent amniotic membrane transplantation after using antibiotic drops. Observation of the growth of conjunctival epithelium and comparison of the healing rate of the two groups. Results: The healing rates of the mild, moderate and severe exposure study group were 100% and 92.3%. The healing rates of the mild, moderate and severe exposure control group were 55.6% and 66.7% respectively. The difference of the healing rates of the mild exposure study group and the control group was significant (P=0.033). And the difference of the healing rates of the moderate and severe exposure study group and the control group was not significant (P=0.167). Conclusion: bFGF may promote obviously the healing of orbital implant exposure, particularly it can be the first choice for the treatment of mild degree exposure. For the moderate and severe cases, it can be administered before surgical repair to enhance neovascularization and will tend to increase the success rate of surgical repair.展开更多
BACKGROUND: Both animal experiments and clinical studies have shown that basic fibroblast growth factor (bFGF) and danshen (Salvia miltiorrhiza) can exhibit protective effects on ischemia-reperfusion cerebral inj...BACKGROUND: Both animal experiments and clinical studies have shown that basic fibroblast growth factor (bFGF) and danshen (Salvia miltiorrhiza) can exhibit protective effects on ischemia-reperfusion cerebral injury. OBJECTIVE: To test whether bFGF and danshen can protect cerebral injury induced by exposure to repeated, high, positive acceleration (+Gz) in an animal model and to analyze the possible mechanisms. DESIGN, TIME AND SETTING: Randomized controlled animal study. The experiment was performed at the Research Center for Molecular Biology, Air-force General Hospital of Chinese PLA from April to August 2000. MATERIALS: A total of 20 clean grade, healthy, Sprague Dawley rats of both genders, weighing (200 ± 15) g, were provided by our experimental animal center. Rats were randomly divided into 5 groups: the control group, +Gz exposure group, bFGF group, danshen group, and saline group, with 4 animals per group. bFGF (Beijing Bailuyuan Biotechnology Co. Ltd.) and danshen solution (Shanghai Zhongxi Pharmaceutical Co. Ltd.) were used. METHODS: All rats were fixed on a rotary arm of a centrifugal apparatus (2 m in radius) with their heads oriented towards the center of the apparatus. Except for rats in the control group, the value of +Gz exposure was +14 Gz with an acceleration rate of 1.5 G/s. The peak force lasted for 45 seconds. +Gz exposure was performed three times with intervals of 30 minutes. Rats in the control group received the same +Gz procedure, but the G value was +1 Gz. Rats in bFGF group and danshen group were intraperitoneally injected with 100 μg/kg bFGF or 15 g/kg danshen solution, respectively, at 30 minutes prior to centrifugation and immediately after centrifugation. Rats in saline group were injected with the same volume of saline. Six hours after exposure, rats were decapitated. One hemisphere was preserved in liquid nitrogen for RNA extraction and the other was processed for apoptosis detection. MAIN OUTCOME MEASURES: mRNA levels of bcl-2 and p53 were measured by semi-quantitative reverse-transcription polymerase chain reaction. Apoptotic cell death was detected by terminal deoxynuleotidyl transferase-mediated dUTP nick end labeling. RESULTS: Changes in mRNA expression of bcl-2 and p53 and apoptotic cells were observed in rat brain six hours after repeated +Gz exposures, bFGF and danshen were able block the changes of bcl-2 and p53 expression and inhibit apoptotic cell death. CONCLUSION: The data suggest that apoptosis and changes in bcl-2 and p53 expression in the rat brain can be induced by repeated +Gz exposures. Apoptosis is, therefore, one of the molecular mechanisms of brain damage induced by repeated +Gz exposures, bFGF and danshen were of the equal potency in preventing brain injury induced by repeated +Gz exposures.展开更多
BACKGROUND: Human gliomas are more likely to express basic fibroblast growth factor-2 (FGF-2) insulin-like growth factor-1(IGF-1), and IGF-1 receptor (IGF-1R) than normal brain tissue. These factors activate si...BACKGROUND: Human gliomas are more likely to express basic fibroblast growth factor-2 (FGF-2) insulin-like growth factor-1(IGF-1), and IGF-1 receptor (IGF-1R) than normal brain tissue. These factors activate signal transduction systems of Ras/MAPK and PI3K/Akl, which promote glioma growth. OBJECTIVE: To utilize RNA interference (RNAi) technique to down-regulate FGF-2, IGF-1, and IGF-1R gene expression, and to investigate the effects of these genes on rat C6 glioma cells, as well as the feasibility of RNAi for treating glioma. DESIGN, TIME AND SETTING: This neurooncological, randomized, controlled, in vivo and in vitro experiment, which used RNAi methodology, was performed at the Laboratory of Molecular Biology, Institute of Biochemistry, Chinese Academy of Sciences between August 2005 and February 2008. MATERIALS: Rat C6 cell lines were purchased from Shanghai Institute of Cellular Biology Affiliated to Chinese Academy of Sciences. Small interfering RNA (siRNA) was synthesized by Shanghai GenePharma. Anti-IGF-1, anti-IGF-1R, anti-FGF-2, anti-mouse and anti-rabbit IgG G1-HRP antibodies were provided by Santa Cruz Biotechnology, USA. Four to six week-old BALB/c nude mice were purchased from the Laboratory Animal Center, Chinese Academy of Sciences. METHODS: C6 glioma cells were transfected with siRNA, which was chemically synthesized in vitro to correspond to endogenous FGF-2, IGF-1, and IGF-1R genes. The inhibition ratio of targeting mRNA expression was detected by semiquantitative RT-PCR, and protein expression was determined by Western blot analysis. C6 glioma cell proliferation was observed using a growth curve C6 glioma cell apoptosis rate and cell cycle were detected by flow cytometry. C6 glioma cell growth regression was observed by transwell migration assay. In addition, nude mouse subcutaneous tumor models were used in this study. For studying the anti-tumor effects of IGF-1 and IGF-1R siRNA, two blank control groups, with six mice each, were set up: A (2.5 μg siRNA was injected one week after C6 cells were inoculated, Le., when tumor volume reached 8 mm × 8 mm) and B (siRNA was injected at the same time with C6 cells were inoculated. To study the effects of FGF-2 siRNA, the groups consisted of a blank control group, negative control group, 2.6 μg siRNA group, 4 μg siRNA group, and 5.3 μg siRNA group, with six mice each. MAIN OUTCOME MEASURES: mRNA and protein inhibition ratio of FGF-2, IGF-1, and IGF-1 R; C6 glioma cell proliferation, apoptosis, and cycle growth arrest; C6 glioma cell growth regression and subcutaneous tumorigenicity rates. RESULTS: All siRNA constructs proved to be effective. After 48 hours, transfection of 200 nmol/L siRNA resulted in a FGF-2 or IGF-1R gene inhibition ratio 〉 80% and an IGF-1 gene inhibition ratio of approximately 70%. Protein expression levels for FGF-2, IGF-1, and IGF-1R decreased in a dose-dependent manner following siRNA transfection, with an inhibition rate 〉 85%, 60%, and 50%, respectively. C6 glioma cell proliferation and apoptosis rates increased in proportion to siRNA. The apoptosis rate of C6 glioma cells induced by FGF-2, IGF-1, and IGF-1R siRNA was 39.96%, 15.07% and 22.47%, respectively (P 〈 0.01). Transfection of 200 nmol/L IGF or IGF-1R siRNA for 48 hours suppressed C6 glioma cell migration. At 30 days after intratumoral injection of 2.6, 4, and 5.3 tJg FGF-2 siRNA, tumor growth regression rate of FGF-2 siRNA was 56%, 67%, and 86%, respectively. The tumor growth regression rate was 71.88% and 45.71%, respectively, when IGF-1 or IGF-1R siRNA was intratumorally injected 1 week after C6 glioma cell transplantation. When IGF-1 or IGF-1 R siRNA was intratumorally injected during C6 glioma cell transplantation, the tumor growth regression rate was 78.13% and 74.29%, respectively. CONCLUSION: siRNA transfection downregulated gene expression of FGF-2, IGF-1, and IGF-1R In addition, siRNA treatment markedly suppressed glioma cell proliferation, growth, and migration, and concomitantly reduced subcutaneous tumorigenicity.展开更多
Purpose: The usefulness of dissolving microneedles (DMs) for local skin therapy by basic fibroblast growth factor (bFGF) was studied in rats. Methods: We prepared four kinds of bFGF-loaded DMs, approximately 500 μm l...Purpose: The usefulness of dissolving microneedles (DMs) for local skin therapy by basic fibroblast growth factor (bFGF) was studied in rats. Methods: We prepared four kinds of bFGF-loaded DMs, approximately 500 μm length and 300 μm diameter at the bottom. Long-term stability and dissolution studies were performed by HPLC method. Pharmacokinetic and pharmacological evaluations were performed after administration of bFGF loaded DMs to rats. Results: The bFGF contents were 2.15 ± 0.07, 1.07 ± 0.04, 0.56 ± 0.07 and 0.12 ± 0.03 μg. The 100.2 ± 3.4%, 100.2 ± 3.3%, 99.3 ± 1.4% and 100.4 ± 3.0% of bFGF were recovered after 1, 3 and 6 months and 1 year incubation at 40°C. The bFGF was released from DMs within 5 min. In a pharmacokinetic study using 2.0 and 1.0 μg bFGF-loaded DMs, no systemic exposure of bFGF was detected. The initial bFGF concentrations in the rat skin tissue after administration of bFGF-loaded DMs to the hair-removed rat abdominal skin were 510.2 ± 20.1 ng/g wet weight for 2 μg bFGF DMs and 264.2 ± 56.5 ng/g wet weight for 1 μg DMs, declining slowly thereafter to 226.3 ± 33.5 and 105.1 ± 27.4 ng/g wet weight at 6 hr after administration. Good dose-dependency was observed. Pharmacological evaluation of bFGF-loaded DMs of 2.0, 1.0, 0.5, and 0.1 μg, in the wound healing rat model, all used DMs, but 0.1 μg DMs, showed good healing effects. Considered collectively, these results suggest the usefulness of bFGF-loaded DMs for local therapy of skin wound disease.展开更多
文摘Objective:To evaluate the therapeutic effect of recombinant bovine basic fibroblast growth factor(rbFGF)eye gel combined with tobramycin-dexamethasone(TOB-Dex)eye drops on dry eye syndrome(DES)after cataract surgery.Methods:86 patients with DES after cataract surgery,admitted from November 2021 to November 2023,were randomly divided into groups.The observation group included 43 patients treated with rbFGF eye gel combined with TOB-Dex eye drops.The reference group included 43 patients treated with TOB-Dex eye drops alone.Multiple indicators,including total effective rate and clinical symptom scores,were compared between the two groups.Results:The total effective rate in the observation group was higher than in the reference group(P<0.05).Before treatment,there were no differences in clinical symptom scores,serum factors,or disease severity scores between the two groups(P>0.05).Three weeks after treatment,the observation group had lower clinical symptom scores,serum factors,and disease severity scores compared to the reference group(P<0.05).The adverse reaction rate in the observation group was lower than in the reference group(P<0.05).Conclusion:rbFGF eye gel combined with TOB-Dex eye drops can improve the clinical efficacy for patients with DES after cataract surgery,alleviate disease symptoms,reduce inflammatory responses,and have fewer adverse reactions.
文摘Diabetes affects about 422 million people worldwide,causing 1.5 million deaths each year.However,the incidence of diabetes is increasing,including several types of diabetes.Type 1 diabetes(5%-10%of diabetic cases)and type 2 diabetes(90%-95%of diabetic cases)are the main types of diabetes in the clinic.Accumulating evidence shows that the fibroblast growth factor(FGF)family plays important roles in many metabolic disorders,including type 1 and type 2 diabetes.FGF consists of 23 family members(FGF-1-23)in humans.Here,we review current findings of FGFs in the treatment of diabetes and management of diabetic complications.Some FGFs(e.g.,FGF-15,FGF-19,and FGF-21)have been broadly investigated in preclinical studies for the diagnosis and treatment of diabetes,and their therapeutic roles in diabetes are currently under investigation in clinical trials.Overall,the roles of FGFs in diabetes and diabetic complications are involved in numerous processes.First,FGF intervention can prevent high-fat diet-induced obesity and insulin resistance and reduce the levels of fasting blood glucose and triglycerides by regulating lipolysis in adipose tissues and hepatic glucose production.Second,modulation of FGF expression can inhibit renal and cardiac fibrosis by regulating the expression of extracellular matrix components,promote diabetic wound healing process and bone repair,and inhibit cancer cell proliferation and migration.Finally,FGFs can regulate the activation of glucoseexcited neurons and the expression of thermogenic genes.
基金the 2022 Zhejiang Provincial Health Science and Technology Plan,No.2022KY1216.
文摘BACKGROUND Fibroblast growth factor 21(FGF21),primarily secreted by the pancreas,liver,and adipose tissues,plays a pivotal role in regulating glucose and lipid metabolism.Acute pancreatitis(AP)is a common inflammatory disease with specific clinical manifestations.Many patients with diabetes present with concurrent inflammatory symptoms.Diabetes exacerbates intestinal permeability and intestinal inflammation,thus leading to the progression to AP.Our previous study indicated that FGF21 significantly attenuated susceptibility to AP in mice.AIM To investigate the potential protective role of FGF21 against AP in diabetic mice.METHODS In the present study,a mouse model of AP was established in diabetic(db)/db diabetic mice through ceruletide injections.Thereafter,the protective effects of recombinant FGF21 protein against AP were evaluated,with an emphasis on examining serum amylase(AMS)levels and pancreatic and intestinal inflammatory cytokines[interleukin(IL)-6,tumor necrosis factor-alpha(TNF-),and intestinal IL-1β].Additionally,the impact of this treatment on the histopathologic changes of the pancreas and small intestinal was examined to elucidate the role of FGF21 in diabetic mice with AP.An antibiotic(Abx)cocktail was administered in combination with FGF21 therapy to investigate whether the effect of FGF21 on AP in diabetic mice with AP was mediated through the modulation of the gut microbiota. Subsequently, thePhylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt), a bioinformaticssoftware package, was used to predict different pathways between the groups and to explore the potentialmechanisms by which the gut microbiota influenced the protective effect of FGF21.RESULTSThe results indicated that FGF21 notably diminished the levels of serum AMS (944.5 ± 15.9 vs 1732 ± 83.9, P < 0.01)and inflammatory factors including IL-6 (0.2400 ± 0.55 vs 1.233 ± 0.053, P < 0.01), TNF- (0.7067 ± 0.22 vs 1.433 ±0.051, P < 0.01), and IL-1β (1.377 ± 0.069 vs 0.3328 ± 0.02542, P < 0.01) in diabetic mice with AP. Moreover, notablesigns of recovery were observed in the pancreatic structure of the mice. The histologic evidence of inflammation inthe small intestine, including edema and villous damage, was significantly alleviated. FGF21 also significantlyaltered the composition of the gut microbiota, reestablishing the Bacteroidetes/Firmicutes ratio. Upon treatment withan Abx cocktail to deplete the gut microbiota, the FGF21 + Abx group showed lower levels of serum AMS (0.9328 ±0.075 vs 0.2249 ± 0.023, P < 0.01) and inflammatory factors (1.083 ± 0.12 vs 0.2799 ± 0.032, p < 0.01) than the FGF21group. Furthermore, the FGF21 + Abx group exhibited diminished injury to the pancreatic and small intestinaltissues, accompanied by a significant decrease in blood glucose levels (17.50 ± 1.1 vs 9.817 ± 0.69 mmol/L, P <0.001). These findings underscored the superior protective effects of the combination therapy involving an Abxcocktail with FGF21 over the FGF21 treatment alone in diabetic mice with AP. The gut microbiota compositionacross different groups was further characterized, and a differential expression analysis of gene functions wasundertaken using the PICRUSt2 prediction method. These findings suggested that FGF21 could potentially confertherapeutic effects on diabetic mice with AP by modulating the sulfate reduction I pathway and the superpathwayof n-acetylceramide degradation in the gut microbiota.CONCLUSION This study reveals the potential of FGF21 in improving pancreatic and intestinal damage recovery, reducing bloodglucose levels, and reshaping gut microbiota composition in diabetic mice with AP. Notably, the protective effectsof FGF21 are augmented when combined with the Abx cocktail.
文摘Objective: To evaluate the efficacy and the indication of basic fibroblast growth factor (bFGF) in the treatment of exposure of orbital implants. Design: Retrospective and observational case series. Methods: We reviewed 41 patients (41 eyes) suffering exposure of orbital implants from Jan. 2000 to June 2006. The study group patients with mild exposure received com-bined treatment with bFGF and antibiotic drops, and while the control group patients with mild exposure were treated with anti-biotic drops only. The study group patients with moderate and severe exposure received combined treatment with bFGF and antibiotic drops, and after 2 months they were subjected to amniotic membrane transplantation, while the control group patients with moderate and severe exposure underwent amniotic membrane transplantation after using antibiotic drops. Observation of the growth of conjunctival epithelium and comparison of the healing rate of the two groups. Results: The healing rates of the mild, moderate and severe exposure study group were 100% and 92.3%. The healing rates of the mild, moderate and severe exposure control group were 55.6% and 66.7% respectively. The difference of the healing rates of the mild exposure study group and the control group was significant (P=0.033). And the difference of the healing rates of the moderate and severe exposure study group and the control group was not significant (P=0.167). Conclusion: bFGF may promote obviously the healing of orbital implant exposure, particularly it can be the first choice for the treatment of mild degree exposure. For the moderate and severe cases, it can be administered before surgical repair to enhance neovascularization and will tend to increase the success rate of surgical repair.
文摘BACKGROUND: Both animal experiments and clinical studies have shown that basic fibroblast growth factor (bFGF) and danshen (Salvia miltiorrhiza) can exhibit protective effects on ischemia-reperfusion cerebral injury. OBJECTIVE: To test whether bFGF and danshen can protect cerebral injury induced by exposure to repeated, high, positive acceleration (+Gz) in an animal model and to analyze the possible mechanisms. DESIGN, TIME AND SETTING: Randomized controlled animal study. The experiment was performed at the Research Center for Molecular Biology, Air-force General Hospital of Chinese PLA from April to August 2000. MATERIALS: A total of 20 clean grade, healthy, Sprague Dawley rats of both genders, weighing (200 ± 15) g, were provided by our experimental animal center. Rats were randomly divided into 5 groups: the control group, +Gz exposure group, bFGF group, danshen group, and saline group, with 4 animals per group. bFGF (Beijing Bailuyuan Biotechnology Co. Ltd.) and danshen solution (Shanghai Zhongxi Pharmaceutical Co. Ltd.) were used. METHODS: All rats were fixed on a rotary arm of a centrifugal apparatus (2 m in radius) with their heads oriented towards the center of the apparatus. Except for rats in the control group, the value of +Gz exposure was +14 Gz with an acceleration rate of 1.5 G/s. The peak force lasted for 45 seconds. +Gz exposure was performed three times with intervals of 30 minutes. Rats in the control group received the same +Gz procedure, but the G value was +1 Gz. Rats in bFGF group and danshen group were intraperitoneally injected with 100 μg/kg bFGF or 15 g/kg danshen solution, respectively, at 30 minutes prior to centrifugation and immediately after centrifugation. Rats in saline group were injected with the same volume of saline. Six hours after exposure, rats were decapitated. One hemisphere was preserved in liquid nitrogen for RNA extraction and the other was processed for apoptosis detection. MAIN OUTCOME MEASURES: mRNA levels of bcl-2 and p53 were measured by semi-quantitative reverse-transcription polymerase chain reaction. Apoptotic cell death was detected by terminal deoxynuleotidyl transferase-mediated dUTP nick end labeling. RESULTS: Changes in mRNA expression of bcl-2 and p53 and apoptotic cells were observed in rat brain six hours after repeated +Gz exposures, bFGF and danshen were able block the changes of bcl-2 and p53 expression and inhibit apoptotic cell death. CONCLUSION: The data suggest that apoptosis and changes in bcl-2 and p53 expression in the rat brain can be induced by repeated +Gz exposures. Apoptosis is, therefore, one of the molecular mechanisms of brain damage induced by repeated +Gz exposures, bFGF and danshen were of the equal potency in preventing brain injury induced by repeated +Gz exposures.
基金the National Natural Science Foundation of China,No.30371459Science and Technology Development Fund of Shanghai,No.034047
文摘BACKGROUND: Human gliomas are more likely to express basic fibroblast growth factor-2 (FGF-2) insulin-like growth factor-1(IGF-1), and IGF-1 receptor (IGF-1R) than normal brain tissue. These factors activate signal transduction systems of Ras/MAPK and PI3K/Akl, which promote glioma growth. OBJECTIVE: To utilize RNA interference (RNAi) technique to down-regulate FGF-2, IGF-1, and IGF-1R gene expression, and to investigate the effects of these genes on rat C6 glioma cells, as well as the feasibility of RNAi for treating glioma. DESIGN, TIME AND SETTING: This neurooncological, randomized, controlled, in vivo and in vitro experiment, which used RNAi methodology, was performed at the Laboratory of Molecular Biology, Institute of Biochemistry, Chinese Academy of Sciences between August 2005 and February 2008. MATERIALS: Rat C6 cell lines were purchased from Shanghai Institute of Cellular Biology Affiliated to Chinese Academy of Sciences. Small interfering RNA (siRNA) was synthesized by Shanghai GenePharma. Anti-IGF-1, anti-IGF-1R, anti-FGF-2, anti-mouse and anti-rabbit IgG G1-HRP antibodies were provided by Santa Cruz Biotechnology, USA. Four to six week-old BALB/c nude mice were purchased from the Laboratory Animal Center, Chinese Academy of Sciences. METHODS: C6 glioma cells were transfected with siRNA, which was chemically synthesized in vitro to correspond to endogenous FGF-2, IGF-1, and IGF-1R genes. The inhibition ratio of targeting mRNA expression was detected by semiquantitative RT-PCR, and protein expression was determined by Western blot analysis. C6 glioma cell proliferation was observed using a growth curve C6 glioma cell apoptosis rate and cell cycle were detected by flow cytometry. C6 glioma cell growth regression was observed by transwell migration assay. In addition, nude mouse subcutaneous tumor models were used in this study. For studying the anti-tumor effects of IGF-1 and IGF-1R siRNA, two blank control groups, with six mice each, were set up: A (2.5 μg siRNA was injected one week after C6 cells were inoculated, Le., when tumor volume reached 8 mm × 8 mm) and B (siRNA was injected at the same time with C6 cells were inoculated. To study the effects of FGF-2 siRNA, the groups consisted of a blank control group, negative control group, 2.6 μg siRNA group, 4 μg siRNA group, and 5.3 μg siRNA group, with six mice each. MAIN OUTCOME MEASURES: mRNA and protein inhibition ratio of FGF-2, IGF-1, and IGF-1 R; C6 glioma cell proliferation, apoptosis, and cycle growth arrest; C6 glioma cell growth regression and subcutaneous tumorigenicity rates. RESULTS: All siRNA constructs proved to be effective. After 48 hours, transfection of 200 nmol/L siRNA resulted in a FGF-2 or IGF-1R gene inhibition ratio 〉 80% and an IGF-1 gene inhibition ratio of approximately 70%. Protein expression levels for FGF-2, IGF-1, and IGF-1R decreased in a dose-dependent manner following siRNA transfection, with an inhibition rate 〉 85%, 60%, and 50%, respectively. C6 glioma cell proliferation and apoptosis rates increased in proportion to siRNA. The apoptosis rate of C6 glioma cells induced by FGF-2, IGF-1, and IGF-1R siRNA was 39.96%, 15.07% and 22.47%, respectively (P 〈 0.01). Transfection of 200 nmol/L IGF or IGF-1R siRNA for 48 hours suppressed C6 glioma cell migration. At 30 days after intratumoral injection of 2.6, 4, and 5.3 tJg FGF-2 siRNA, tumor growth regression rate of FGF-2 siRNA was 56%, 67%, and 86%, respectively. The tumor growth regression rate was 71.88% and 45.71%, respectively, when IGF-1 or IGF-1R siRNA was intratumorally injected 1 week after C6 glioma cell transplantation. When IGF-1 or IGF-1 R siRNA was intratumorally injected during C6 glioma cell transplantation, the tumor growth regression rate was 78.13% and 74.29%, respectively. CONCLUSION: siRNA transfection downregulated gene expression of FGF-2, IGF-1, and IGF-1R In addition, siRNA treatment markedly suppressed glioma cell proliferation, growth, and migration, and concomitantly reduced subcutaneous tumorigenicity.
文摘Purpose: The usefulness of dissolving microneedles (DMs) for local skin therapy by basic fibroblast growth factor (bFGF) was studied in rats. Methods: We prepared four kinds of bFGF-loaded DMs, approximately 500 μm length and 300 μm diameter at the bottom. Long-term stability and dissolution studies were performed by HPLC method. Pharmacokinetic and pharmacological evaluations were performed after administration of bFGF loaded DMs to rats. Results: The bFGF contents were 2.15 ± 0.07, 1.07 ± 0.04, 0.56 ± 0.07 and 0.12 ± 0.03 μg. The 100.2 ± 3.4%, 100.2 ± 3.3%, 99.3 ± 1.4% and 100.4 ± 3.0% of bFGF were recovered after 1, 3 and 6 months and 1 year incubation at 40°C. The bFGF was released from DMs within 5 min. In a pharmacokinetic study using 2.0 and 1.0 μg bFGF-loaded DMs, no systemic exposure of bFGF was detected. The initial bFGF concentrations in the rat skin tissue after administration of bFGF-loaded DMs to the hair-removed rat abdominal skin were 510.2 ± 20.1 ng/g wet weight for 2 μg bFGF DMs and 264.2 ± 56.5 ng/g wet weight for 1 μg DMs, declining slowly thereafter to 226.3 ± 33.5 and 105.1 ± 27.4 ng/g wet weight at 6 hr after administration. Good dose-dependency was observed. Pharmacological evaluation of bFGF-loaded DMs of 2.0, 1.0, 0.5, and 0.1 μg, in the wound healing rat model, all used DMs, but 0.1 μg DMs, showed good healing effects. Considered collectively, these results suggest the usefulness of bFGF-loaded DMs for local therapy of skin wound disease.