The tiller emergence in seedling nursery beds and field, and panicle formation in the field were investigated under scattered-planting with seedling dry-raised on plastic trays in double-season rice. A significant dif...The tiller emergence in seedling nursery beds and field, and panicle formation in the field were investigated under scattered-planting with seedling dry-raised on plastic trays in double-season rice. A significant difference was noted in the non-synchronously-emerged tillers (the tillers that formed from latent buds and did not emerge following the normal tillering law on seedling nursery beds and recovered to grow after scattered-planting or transplanting) as well as the percentage of the available synchronously-emerged tillers between seedlings raised on plastic trays under dry-land conditions (DPT) and seedlings raised on nursery beds under wetland conditions (WB). The seedlings under DPT had some non-synchronously-emerged tillers, but those under WB had not. Therefore, the traditional formula for determining the number of rice seedlings was improved, and the formula for determining the number of basic seedlings under scattered planting with DPT in double-season rice was introduced. For early rice, it was X=Y/{(I+t1r1)[1+(N-n-SN)Rr2]+(SN-3-t1)R2r5}, and for late rice, it was X=Y/{(1+t1r1)[1+(N-n-SN)Rr2]+(N-n-SN-3)Rr2R1r3+(SN-3-t1)R2r5}. Where, X represents reasonable number of basic seedlings per unit area at scattered-planting; Y, number of fitting panicles per unit area; t1, total number of tillers per plant; r1, percentage of the total available tillers; N, total number of leaves of the main culm; n, total number of elongated internodes in the main culm; SN, seedling leaf ages at scattered-planting; R, percentage of the primary tillers emerged in available node-position; r2, percentage of the available primary tillers; R1, percentage of the secondary tillers in the field (except the secondary tillers of the seedlings); r3, percentage of the available secondary tillers; R2, percentage of the asynchronously-emerged tillers after scattered-planting; r5, percentage of the available non-synchronously-emerged tillers after scattered-planting.展开更多
There is quite abundant resource of ludwigite ore in Liaoning Province of China. Content of MgO in the slag of pyrometallurgical separation of boron from iron is much higher than that in the ordinary slags. Through th...There is quite abundant resource of ludwigite ore in Liaoning Province of China. Content of MgO in the slag of pyrometallurgical separation of boron from iron is much higher than that in the ordinary slags. Through the equilibrium partition ratio of sulfur L S between the metal and the slag in an atmosphere of CO N 2, the acidic coefficients for B 2O 3 and the basic coefficients for MgO were estimated. The basic formulae were given for the blast furnace type slag containing B 2O 3 and high MgO.展开更多
We demonstrate that a Bell type of experiment asks the impossible of a Kolmogorovian correlation. An Einstein locality explanation in Bell’s format is therefore excluded beforehand by way of the experimental and stat...We demonstrate that a Bell type of experiment asks the impossible of a Kolmogorovian correlation. An Einstein locality explanation in Bell’s format is therefore excluded beforehand by way of the experimental and statistical method followed.展开更多
With the use of a local dependency on instrument setting parameters of the probability density of local hidden variables, it is demonstrated that a Kolmogorov formulation reproduces the quantum correlation. This is th...With the use of a local dependency on instrument setting parameters of the probability density of local hidden variables, it is demonstrated that a Kolmogorov formulation reproduces the quantum correlation. This is the novelty of the work. In a Bell experiment, one cannot distinguish between Bell’s formula and the here presented local Kolmogorov formula. With the presented formula, no CHSH can be obtained. Therefore, the famous CHSH inequality has no excluding power concerning local extra Einstein parameter models. This result concurs with other previous research concerning difficulties with Bell’s formula.展开更多
文摘The tiller emergence in seedling nursery beds and field, and panicle formation in the field were investigated under scattered-planting with seedling dry-raised on plastic trays in double-season rice. A significant difference was noted in the non-synchronously-emerged tillers (the tillers that formed from latent buds and did not emerge following the normal tillering law on seedling nursery beds and recovered to grow after scattered-planting or transplanting) as well as the percentage of the available synchronously-emerged tillers between seedlings raised on plastic trays under dry-land conditions (DPT) and seedlings raised on nursery beds under wetland conditions (WB). The seedlings under DPT had some non-synchronously-emerged tillers, but those under WB had not. Therefore, the traditional formula for determining the number of rice seedlings was improved, and the formula for determining the number of basic seedlings under scattered planting with DPT in double-season rice was introduced. For early rice, it was X=Y/{(I+t1r1)[1+(N-n-SN)Rr2]+(SN-3-t1)R2r5}, and for late rice, it was X=Y/{(1+t1r1)[1+(N-n-SN)Rr2]+(N-n-SN-3)Rr2R1r3+(SN-3-t1)R2r5}. Where, X represents reasonable number of basic seedlings per unit area at scattered-planting; Y, number of fitting panicles per unit area; t1, total number of tillers per plant; r1, percentage of the total available tillers; N, total number of leaves of the main culm; n, total number of elongated internodes in the main culm; SN, seedling leaf ages at scattered-planting; R, percentage of the primary tillers emerged in available node-position; r2, percentage of the available primary tillers; R1, percentage of the secondary tillers in the field (except the secondary tillers of the seedlings); r3, percentage of the available secondary tillers; R2, percentage of the asynchronously-emerged tillers after scattered-planting; r5, percentage of the available non-synchronously-emerged tillers after scattered-planting.
文摘图、表和公式一直是计算机语言用来设计制作试题库的难点。而 WORD BASIC由于是基于 Word的计算机语言 ,却能很好的解决这个问题。由各种基于 Windows的软件制作基本的试题库试题 ,这些试题可以很好地组合到一个WORD文件中。由 Word Basic编制的试题库软件对该文件进行选择处理 ,组成了所需要的试卷 ,这些试卷可以包括文字 ,图表 ,公式 ,甚至声音和动画。本文介绍了基于 WORD
文摘There is quite abundant resource of ludwigite ore in Liaoning Province of China. Content of MgO in the slag of pyrometallurgical separation of boron from iron is much higher than that in the ordinary slags. Through the equilibrium partition ratio of sulfur L S between the metal and the slag in an atmosphere of CO N 2, the acidic coefficients for B 2O 3 and the basic coefficients for MgO were estimated. The basic formulae were given for the blast furnace type slag containing B 2O 3 and high MgO.
文摘We demonstrate that a Bell type of experiment asks the impossible of a Kolmogorovian correlation. An Einstein locality explanation in Bell’s format is therefore excluded beforehand by way of the experimental and statistical method followed.
文摘With the use of a local dependency on instrument setting parameters of the probability density of local hidden variables, it is demonstrated that a Kolmogorov formulation reproduces the quantum correlation. This is the novelty of the work. In a Bell experiment, one cannot distinguish between Bell’s formula and the here presented local Kolmogorov formula. With the presented formula, no CHSH can be obtained. Therefore, the famous CHSH inequality has no excluding power concerning local extra Einstein parameter models. This result concurs with other previous research concerning difficulties with Bell’s formula.