The oxidative coupling of methane to C2 hydrocarbons has been studied over a series of La-promoted CaO (La/Ca = 0.05) catalysts, prepared using different precursor salts for CaO and La2O3 (viz. acetates, carbonates...The oxidative coupling of methane to C2 hydrocarbons has been studied over a series of La-promoted CaO (La/Ca = 0.05) catalysts, prepared using different precursor salts for CaO and La2O3 (viz. acetates, carbonates, nitrates and hydroxides) and catalyst preparation methods (viz. physical mixing of precursors, co-precipitation using ammonium carbonate/sodium carbonate as a precipitating agent), under different reaction conditions (temperature: 700-850 ℃, CH4/O2 ratio: 4.0 and 8.0, and GHSV: 51360 cm^3·g^-1·h^- 1). The surface area and surface basicity/base strength distribution of the catalysts have also been investigated. The surface properties and catalytic activity/selectivity of the La-promoted CaO catalysts vary from catalyst to catalyst depending on the catalyst precursors used and catalyst preparation method. The basicity/base strength distribution is strongly influenced by the precursors (for CaO and La2O3) and catalyst preparation method. Basicity (total and strong basic sites measured in terms of CO2 chemisorbed at 50℃ and 500 ℃, respectively) observed for the catalyst prepared by co-precipitation method is higher than that of the catalysts prepared by physical mixing method. The catalysts prepared by the nitrates of La- and Ca- and co- precipitated by the solution of sodium carbonate and ammonium carbonate exhibit different catalytic performance in OCM. The finding that no direct relationship between the surface basicity and catalytic activity/selectivity in OCM exists indicates that basicity is not solely responsible for obtaining high selectivity to C2 hydrocarbons.展开更多
Surface properties (viz. surface area, basicity/base strength distribution, and crystal phases) of alkali metal doped CaO (alkali metal/Ca= 0.1 and 0.4) catalysts and their catalytic activity/selectivity in oxidat...Surface properties (viz. surface area, basicity/base strength distribution, and crystal phases) of alkali metal doped CaO (alkali metal/Ca= 0.1 and 0.4) catalysts and their catalytic activity/selectivity in oxidative coupling of methane (OCM) to higher hydrocarbons at different reaction conditions (viz. temperature, 700 and 750 ℃; CH4/O2 ratio, 4.0 and 8.0 and space velocity, 5140-20550 cm^3 ·g^-1·h^-1) have been investigated. The influence of catalyst calcination temperature on the activity/selectivity has also been investigated. The surface properties (viz. surface area, basicity/base strength distribution) and catalytic activity/selectivity of the alkali metal doped CaO catalysts are strongly influenced by the alkali metal promoter and its concentration in the alkali metal doped CaO catalysts. An addition of alkali metal promoter to CaO results in a large decrease in the surface area but a large increase in the surface basicity (strong basic sites) and the C2+ selectivity and yield of the catalysts in the OCM process. The activity and selectivity are strongly influenced by the catalyst calcination temperature. No direct relationship between surface basicity and catalytic activity/selectivity has been observed. Among the alkali metal doped CaO catalysts, Na-CaO (Na/Ca = 0.1, before calcination) catalyst (calcined at 750 ℃), showed best performance (C2+ selectivity of 68.8% with 24.7% methane conversion), whereas the poorest performance was shown by the Rb-CaO catalyst in the OCM process.展开更多
文摘The oxidative coupling of methane to C2 hydrocarbons has been studied over a series of La-promoted CaO (La/Ca = 0.05) catalysts, prepared using different precursor salts for CaO and La2O3 (viz. acetates, carbonates, nitrates and hydroxides) and catalyst preparation methods (viz. physical mixing of precursors, co-precipitation using ammonium carbonate/sodium carbonate as a precipitating agent), under different reaction conditions (temperature: 700-850 ℃, CH4/O2 ratio: 4.0 and 8.0, and GHSV: 51360 cm^3·g^-1·h^- 1). The surface area and surface basicity/base strength distribution of the catalysts have also been investigated. The surface properties and catalytic activity/selectivity of the La-promoted CaO catalysts vary from catalyst to catalyst depending on the catalyst precursors used and catalyst preparation method. The basicity/base strength distribution is strongly influenced by the precursors (for CaO and La2O3) and catalyst preparation method. Basicity (total and strong basic sites measured in terms of CO2 chemisorbed at 50℃ and 500 ℃, respectively) observed for the catalyst prepared by co-precipitation method is higher than that of the catalysts prepared by physical mixing method. The catalysts prepared by the nitrates of La- and Ca- and co- precipitated by the solution of sodium carbonate and ammonium carbonate exhibit different catalytic performance in OCM. The finding that no direct relationship between the surface basicity and catalytic activity/selectivity in OCM exists indicates that basicity is not solely responsible for obtaining high selectivity to C2 hydrocarbons.
文摘Surface properties (viz. surface area, basicity/base strength distribution, and crystal phases) of alkali metal doped CaO (alkali metal/Ca= 0.1 and 0.4) catalysts and their catalytic activity/selectivity in oxidative coupling of methane (OCM) to higher hydrocarbons at different reaction conditions (viz. temperature, 700 and 750 ℃; CH4/O2 ratio, 4.0 and 8.0 and space velocity, 5140-20550 cm^3 ·g^-1·h^-1) have been investigated. The influence of catalyst calcination temperature on the activity/selectivity has also been investigated. The surface properties (viz. surface area, basicity/base strength distribution) and catalytic activity/selectivity of the alkali metal doped CaO catalysts are strongly influenced by the alkali metal promoter and its concentration in the alkali metal doped CaO catalysts. An addition of alkali metal promoter to CaO results in a large decrease in the surface area but a large increase in the surface basicity (strong basic sites) and the C2+ selectivity and yield of the catalysts in the OCM process. The activity and selectivity are strongly influenced by the catalyst calcination temperature. No direct relationship between surface basicity and catalytic activity/selectivity has been observed. Among the alkali metal doped CaO catalysts, Na-CaO (Na/Ca = 0.1, before calcination) catalyst (calcined at 750 ℃), showed best performance (C2+ selectivity of 68.8% with 24.7% methane conversion), whereas the poorest performance was shown by the Rb-CaO catalyst in the OCM process.