River runoff is affected by many factors, including long-term effects such as climate change that alter rainfall-runoff relationships, and short-term effects related to human intervention(e.g., dam construction, land-...River runoff is affected by many factors, including long-term effects such as climate change that alter rainfall-runoff relationships, and short-term effects related to human intervention(e.g., dam construction, land-use and land-cover change(LUCC)). Discharge from the Yellow River system has been modified in numerous ways over the past century, not only as a result of increased demands for water from agriculture and industry, but also due to hydrological disturbance from LUCC, climate change and the construction of dams. The combined effect of these disturbances may have led to water shortages. Considering that there has been little change in long-term precipitation, dramatic decreases in water discharge may be attributed mainly to human activities, such as water usage, water transportation and dam construction. LUCC may also affect water availability, but the relative contribution of LUCC to changing discharge is unclear. In this study, the impact of LUCC on natural discharge(not including anthropogenic usage) is quantified using an attribution approach based on satellite land cover and discharge data. A retention parameter is used to relate LUCC to changes in discharge. We find that LUCC is the primary factor, and more dominant than climate change, in driving the reduction in discharge during 1956–2012, especially from the mid-1980 s to the end-1990 s. The ratio of each land class to total basin area changed significantly over the study period. Forestland and cropland increased by about 0.58% and 1.41%, respectively, and unused land decreased by 1.16%. Together, these variations resulted in changes in the retention parameter, and runoff generation showed a significant decrease after the mid-1980 s. Our findings highlight the importance of LUCC to runoff generation at the basin scale, and improve our understanding of the influence of LUCC on basin-scale hydrology.展开更多
With the artificial alder and cypress mixed forest being planted, there has been a marked land use change since 1970s' in Hilly Area of Central Sichuan Basin, China. Data from meteorological observations or posts ...With the artificial alder and cypress mixed forest being planted, there has been a marked land use change since 1970s' in Hilly Area of Central Sichuan Basin, China. Data from meteorological observations or posts operated over long time, measurement and calculation of NPP (net primary production) and biomass of biological community, and analysis of soil organic matter content show that the artificial alder and cypress mixed forest has outstanding eco-environmental effect: adjusting local climate, raising soil fertility, alleviating menace of drought, and raising NPP and biomass of biological community. It is very beneficial for improving ecological environment to afforest artificial alder and cypress mixed forest in populous Hilly Area of Central Sichuan Basin, China. Key Words: land use/land cover change (LUCC); eco-environmental effect; Hilly Area of Central Sichuan Basin; the artificial alder and cypress mixed forest展开更多
Based on multi-type,multi-temporal remote sensing data,we have monitored recent changes in cultivated land use and vegetation,in sandy areas and salinized desertification in the Green Corridor zone of the main channel...Based on multi-type,multi-temporal remote sensing data,we have monitored recent changes in cultivated land use and vegetation,in sandy areas and salinized desertification in the Green Corridor zone of the main channel of the Tarim River Basin.The results of our investigation show that the ecological environment in the Green Corridor of the main channel of the Tarim River Basin has conspicuously improved from 2002 to 2004.These improvements show up largely in such aspects as an increase in the rate of vegetation cover,a reduction in desertification land areas and a weakening in the intensity of sandy and the salinized land.On the other hand,the cultivated area in the Tarim River Basin significantly increased from 2002 to 2004.The rate of growth in cultivated areas during this period was significantly higher than that from 1999 to 2002.The increase in the use of irrigation resulting from the substantial increase in cultivated areas has a long-term potential restraining effect on the restoration of ecological functions of the Tarim River.展开更多
Tight sandstone reservoirs are widely developed in the Mesozoic Yanchang Formation of the Ordos Basin,China.There is a lack of understanding on the sedimentary setting,source-reservoir relationship and oil accumulatio...Tight sandstone reservoirs are widely developed in the Mesozoic Yanchang Formation of the Ordos Basin,China.There is a lack of understanding on the sedimentary setting,source-reservoir relationship and oil accumulation conditions in this area.In this study,through the comprehensive analysis of the distri-bution of tight oil,we evaluated the properties and petrological features of reservoir,geochemical characteristics of source rocks,the source-reservoir relationship,as well as the trapping,preservation and accumulation conditions of tight oil in the Chang 7 Member,and predicted the sweet spots of tight oil in the study area.The results show that the Chang 7 Member is a typical low-porosity and ultra-low permeability reservoir with great tightness,small pore throat and high capillary pressure,and must have been of near-source accumulation.The source rocks are mainly developed in the Chang 7_(3) submember,and the reservoirs mainly occur in the Chang 7_(1) and Chang 7_(2) submembers,forming a combination mode of“lower source rock and upper reservoir”.Sandbodies with good connectivity and fractures being well developed in local areas are the main hydrocarbon transport systems.The abnormal high pressure caused by hydrocarbon generation and pressurization is the main driving force of tight oil accumulation.The mode of hydrocarbon transportation is dominated by the vertical or lateral migration from under-lying source rocks or adjacent source rocks to reservoirs within a short distance.Following the integrated evaluation of lithology,physical properties and oil saturation of reservoirs and geochemical character-istics of source rocks,we grouped the sweet spots of Chang 7 Member into three types:Type I,Type II and Type III.Among others,the Type I sweet spots are the best in terms of porosity,permeability and source rock thickness and hydrocarbon enrichment which should be the focus of oilfield development.This study lays an important foundation for the economic and efficient development of tight oil in the Chang 7 Member of Heshui area,and has important implications on tight sandstone reservoirs in other regions of Ordos Basin in China.展开更多
1 Introduction Shale formations bear abundant mineral resource and*unconventional petroleum resource,and the unconventional petroleum resource that contain in the shale formation should be integrated and researched.
Based on a synthetic geological study of drilling, well logging and core observations, two main genetic types of Chang 9sand body in Odors Basin were recognized, which included two effects, that is, delta environment ...Based on a synthetic geological study of drilling, well logging and core observations, two main genetic types of Chang 9sand body in Odors Basin were recognized, which included two effects, that is, delta environment and tractive current effects that lead to the development of mouth bar, distal bar, sheet sand and other sand bodies of subaerial and subaqueous distributary channel,natural levee, flood fan and delta front, and shore-shallow lake environment and lake flow transformation effects that result in the development of sandy beach bar, sheet sand and other sand bodies. Chang 9 sand body mainly developed five basic vertical structures, namely box shape, campaniform, infundibuliform, finger and dentoid. The vertical stacking patterns of multilayer sand body was complex, and the common shapes included box shape + box shape, campaniform + campaniform, campaniform + box shape, infundibuliform + infundibuliform, campaniform + infundibuliform, box shape + campaniform, box shape + infundibuliform,and finger + finger. Based on the analysis on major dominating factors of vertical structure of sand body, sedimentary environment,sedimentary facies and rise, fall and cycle of base level are identified as the major geological factors that control the vertical structure of single sand body as well as vertical stacking patterns and distribution of multistory sand bodies.展开更多
[Objective]The aim was to study the interannual changes of atmospheric dust deposition and quantity of combustible dust-fall in Chaihe basin.[Method]Taking Chaihe Basin in south Dianchi as study area,the atmospheric d...[Objective]The aim was to study the interannual changes of atmospheric dust deposition and quantity of combustible dust-fall in Chaihe basin.[Method]Taking Chaihe Basin in south Dianchi as study area,the atmospheric dust deposition and combustible substances in the residential,chemical area,sand production area and watershed in Chaihe basin were measured.The pollution and interannual changes of atmospheric dust in Chaihe basin were discussed.[Result]In the residential,chemical area,sand production area and watershed,the amount of sand was the highest in sand production area and lowest in the watershed.While the dust amount in the chemical area and watershed areas were lower than sand production area and higher than watershed area.In the four chosen areas,the highest value of dust appeared in autumn and the lowest value appeared in precipitation season.Sand in other months changed and the change scale was large,which indicated that the meteorological condition had large influences on dust.Relevance analysis indicated that the dust in sand production area showed positive relevance to flammable amount of dust.Dust and flammable amount had positive relevance.[Conclusion]The study provided theoretical basis for the atmospheric pollution situation in Chaihe Basin.展开更多
Based on TIMESAT 3.2 platform, MODIS NDVI data(2000–2015) of Qaidam Basin are fitted, and three main phenological parameters are extracted with the method of dynamic threshold, including the start of growth season(SG...Based on TIMESAT 3.2 platform, MODIS NDVI data(2000–2015) of Qaidam Basin are fitted, and three main phenological parameters are extracted with the method of dynamic threshold, including the start of growth season(SGS), the end of growth season(EGS) and the length of growth season(LGS). The spatial and temporal variation of vegetation phenology and its response to climate changes are analyzed respectively. The conclusions are as follows:(1) SGS is mainly delayed as a whole. Areas delayed are more than the advanced in EGS, and EGS is a little delayed as a whole. LGS is generally shortened.(2) With the altitude rising, SGS is delayed, EGS is advanced, and LGS is shortened and phenophase appears a big variation below 3000 m and above 5000 m.(3) From 2000 to 2015, the temperature appears a slight increase along with a big fluctuation, and the precipitation increases evidently.(4) Response of phenophase to precipitation is not obvious in the low elevation humid regions, where SGS arrives early and EGS delays; while, in the upper part of the mountain regions, SGS delays and EGS advances with temperature rising, SGS arrives early and EGS delays with precipitation increasing.展开更多
In this study, historical landscape dynamics were investigated to(i) map the land use/cover types for the years 1972, 1987, 2000 and 2014;(ii) determine the types and processes of landscape dynamics; and(iii) as...In this study, historical landscape dynamics were investigated to(i) map the land use/cover types for the years 1972, 1987, 2000 and 2014;(ii) determine the types and processes of landscape dynamics; and(iii) assess the landscape fragmentation and habitat loss over time. Supervised classification of multi-temporal Landsat images was used through a pixel-based approach. Post–classification methods included systematic and random change detection, trajectories analysis and landscape fragmentation assessment. The overall accuracies(and Kappa statistics) were of 68.86%(0.63), 91.32%(0.79), 90.66%(0.88) and 91.88%(0.89) for 1972, 1987, 2000 and 2014, respectively. The spatio-temporal analyses indicated that forests, woodlands and savannahs dominated the landscapes during the four dates, though constant areal decreases were observed. The most important dynamic process was the decline of woodlands with an average annual net loss rate of –2%. Meanwhile, the most important land transformation occurred during the transition 2000–2014, due to anthropogenic pressures. Though the most important loss of vegetation greenness occurred in the unprotected areas, the overall analyses of change indicated a declining trend of land cover quality and an increasing landscape fragmentation. Sustainable conservation strategies should be promoted while focusing restoration attention on degraded lands and fragmented ecosystems in order to support rural livelihood and biodiversity conservation.展开更多
基金Under the auspices of Key Program of Chinese Academy of Sciences(No.KJZD-EW-TZ-G10)National Key Research and Development Program of China(No.2016YFA0602704)Breeding Project of Institute of Geographic Sciences and Natural Resources Research,CAS(No.TSYJS04)
文摘River runoff is affected by many factors, including long-term effects such as climate change that alter rainfall-runoff relationships, and short-term effects related to human intervention(e.g., dam construction, land-use and land-cover change(LUCC)). Discharge from the Yellow River system has been modified in numerous ways over the past century, not only as a result of increased demands for water from agriculture and industry, but also due to hydrological disturbance from LUCC, climate change and the construction of dams. The combined effect of these disturbances may have led to water shortages. Considering that there has been little change in long-term precipitation, dramatic decreases in water discharge may be attributed mainly to human activities, such as water usage, water transportation and dam construction. LUCC may also affect water availability, but the relative contribution of LUCC to changing discharge is unclear. In this study, the impact of LUCC on natural discharge(not including anthropogenic usage) is quantified using an attribution approach based on satellite land cover and discharge data. A retention parameter is used to relate LUCC to changes in discharge. We find that LUCC is the primary factor, and more dominant than climate change, in driving the reduction in discharge during 1956–2012, especially from the mid-1980 s to the end-1990 s. The ratio of each land class to total basin area changed significantly over the study period. Forestland and cropland increased by about 0.58% and 1.41%, respectively, and unused land decreased by 1.16%. Together, these variations resulted in changes in the retention parameter, and runoff generation showed a significant decrease after the mid-1980 s. Our findings highlight the importance of LUCC to runoff generation at the basin scale, and improve our understanding of the influence of LUCC on basin-scale hydrology.
基金Supported by the Knowledge Innovation Program of Chinese Academy of Sciences(KZCX1-SW-01-01B)Cultivatlon Foundation of Institute of Mountain Hazards and Environment,CAS
文摘With the artificial alder and cypress mixed forest being planted, there has been a marked land use change since 1970s' in Hilly Area of Central Sichuan Basin, China. Data from meteorological observations or posts operated over long time, measurement and calculation of NPP (net primary production) and biomass of biological community, and analysis of soil organic matter content show that the artificial alder and cypress mixed forest has outstanding eco-environmental effect: adjusting local climate, raising soil fertility, alleviating menace of drought, and raising NPP and biomass of biological community. It is very beneficial for improving ecological environment to afforest artificial alder and cypress mixed forest in populous Hilly Area of Central Sichuan Basin, China. Key Words: land use/land cover change (LUCC); eco-environmental effect; Hilly Area of Central Sichuan Basin; the artificial alder and cypress mixed forest
基金Financial support for this work was provided by the National Natural Science Foundation of China (No. 41040011)the Fun-damental Research Funds for the Central Universities (No.CHD2010JC103)
文摘Based on multi-type,multi-temporal remote sensing data,we have monitored recent changes in cultivated land use and vegetation,in sandy areas and salinized desertification in the Green Corridor zone of the main channel of the Tarim River Basin.The results of our investigation show that the ecological environment in the Green Corridor of the main channel of the Tarim River Basin has conspicuously improved from 2002 to 2004.These improvements show up largely in such aspects as an increase in the rate of vegetation cover,a reduction in desertification land areas and a weakening in the intensity of sandy and the salinized land.On the other hand,the cultivated area in the Tarim River Basin significantly increased from 2002 to 2004.The rate of growth in cultivated areas during this period was significantly higher than that from 1999 to 2002.The increase in the use of irrigation resulting from the substantial increase in cultivated areas has a long-term potential restraining effect on the restoration of ecological functions of the Tarim River.
基金This work was supported by PetroChina Innovation Foundation(No.2020D-5007-0202)Opening Foundation of State Key Laboratory of Continental Dynamics,Northwest University(No.20LCD09).
文摘Tight sandstone reservoirs are widely developed in the Mesozoic Yanchang Formation of the Ordos Basin,China.There is a lack of understanding on the sedimentary setting,source-reservoir relationship and oil accumulation conditions in this area.In this study,through the comprehensive analysis of the distri-bution of tight oil,we evaluated the properties and petrological features of reservoir,geochemical characteristics of source rocks,the source-reservoir relationship,as well as the trapping,preservation and accumulation conditions of tight oil in the Chang 7 Member,and predicted the sweet spots of tight oil in the study area.The results show that the Chang 7 Member is a typical low-porosity and ultra-low permeability reservoir with great tightness,small pore throat and high capillary pressure,and must have been of near-source accumulation.The source rocks are mainly developed in the Chang 7_(3) submember,and the reservoirs mainly occur in the Chang 7_(1) and Chang 7_(2) submembers,forming a combination mode of“lower source rock and upper reservoir”.Sandbodies with good connectivity and fractures being well developed in local areas are the main hydrocarbon transport systems.The abnormal high pressure caused by hydrocarbon generation and pressurization is the main driving force of tight oil accumulation.The mode of hydrocarbon transportation is dominated by the vertical or lateral migration from under-lying source rocks or adjacent source rocks to reservoirs within a short distance.Following the integrated evaluation of lithology,physical properties and oil saturation of reservoirs and geochemical character-istics of source rocks,we grouped the sweet spots of Chang 7 Member into three types:Type I,Type II and Type III.Among others,the Type I sweet spots are the best in terms of porosity,permeability and source rock thickness and hydrocarbon enrichment which should be the focus of oilfield development.This study lays an important foundation for the economic and efficient development of tight oil in the Chang 7 Member of Heshui area,and has important implications on tight sandstone reservoirs in other regions of Ordos Basin in China.
基金supported by funding the National Basic Research Program of China (973 Program) and the grant number is 2014CB239000
文摘1 Introduction Shale formations bear abundant mineral resource and*unconventional petroleum resource,and the unconventional petroleum resource that contain in the shale formation should be integrated and researched.
基金Project(2011D-5006-0105)supported by the Technology Innovation Foundation of CNPC,ChinaProject(SZD0414)supported by the Key Discipline of Mineral Prospecting and Exploration of Sichuan Province,China
文摘Based on a synthetic geological study of drilling, well logging and core observations, two main genetic types of Chang 9sand body in Odors Basin were recognized, which included two effects, that is, delta environment and tractive current effects that lead to the development of mouth bar, distal bar, sheet sand and other sand bodies of subaerial and subaqueous distributary channel,natural levee, flood fan and delta front, and shore-shallow lake environment and lake flow transformation effects that result in the development of sandy beach bar, sheet sand and other sand bodies. Chang 9 sand body mainly developed five basic vertical structures, namely box shape, campaniform, infundibuliform, finger and dentoid. The vertical stacking patterns of multilayer sand body was complex, and the common shapes included box shape + box shape, campaniform + campaniform, campaniform + box shape, infundibuliform + infundibuliform, campaniform + infundibuliform, box shape + campaniform, box shape + infundibuliform,and finger + finger. Based on the analysis on major dominating factors of vertical structure of sand body, sedimentary environment,sedimentary facies and rise, fall and cycle of base level are identified as the major geological factors that control the vertical structure of single sand body as well as vertical stacking patterns and distribution of multistory sand bodies.
文摘[Objective]The aim was to study the interannual changes of atmospheric dust deposition and quantity of combustible dust-fall in Chaihe basin.[Method]Taking Chaihe Basin in south Dianchi as study area,the atmospheric dust deposition and combustible substances in the residential,chemical area,sand production area and watershed in Chaihe basin were measured.The pollution and interannual changes of atmospheric dust in Chaihe basin were discussed.[Result]In the residential,chemical area,sand production area and watershed,the amount of sand was the highest in sand production area and lowest in the watershed.While the dust amount in the chemical area and watershed areas were lower than sand production area and higher than watershed area.In the four chosen areas,the highest value of dust appeared in autumn and the lowest value appeared in precipitation season.Sand in other months changed and the change scale was large,which indicated that the meteorological condition had large influences on dust.Relevance analysis indicated that the dust in sand production area showed positive relevance to flammable amount of dust.Dust and flammable amount had positive relevance.[Conclusion]The study provided theoretical basis for the atmospheric pollution situation in Chaihe Basin.
基金National Natural Science Foundation of China,No.40971118Physical Geography Key Disciplines Construction Subjects of Hebei Province
文摘Based on TIMESAT 3.2 platform, MODIS NDVI data(2000–2015) of Qaidam Basin are fitted, and three main phenological parameters are extracted with the method of dynamic threshold, including the start of growth season(SGS), the end of growth season(EGS) and the length of growth season(LGS). The spatial and temporal variation of vegetation phenology and its response to climate changes are analyzed respectively. The conclusions are as follows:(1) SGS is mainly delayed as a whole. Areas delayed are more than the advanced in EGS, and EGS is a little delayed as a whole. LGS is generally shortened.(2) With the altitude rising, SGS is delayed, EGS is advanced, and LGS is shortened and phenophase appears a big variation below 3000 m and above 5000 m.(3) From 2000 to 2015, the temperature appears a slight increase along with a big fluctuation, and the precipitation increases evidently.(4) Response of phenophase to precipitation is not obvious in the low elevation humid regions, where SGS arrives early and EGS delays; while, in the upper part of the mountain regions, SGS delays and EGS advances with temperature rising, SGS arrives early and EGS delays with precipitation increasing.
基金funded by the German Federal Ministry for Education and Research (BMBF)hosted by the Kwame Nkrumah University of Science and Technology of Kumasi,Ghana+1 种基金the Laboratory of Botany and Plant Ecology (University of Lome, Togo) for fieldwork supportthe contribution of CGIAR-DS through the funding to Quang Bao Le
文摘In this study, historical landscape dynamics were investigated to(i) map the land use/cover types for the years 1972, 1987, 2000 and 2014;(ii) determine the types and processes of landscape dynamics; and(iii) assess the landscape fragmentation and habitat loss over time. Supervised classification of multi-temporal Landsat images was used through a pixel-based approach. Post–classification methods included systematic and random change detection, trajectories analysis and landscape fragmentation assessment. The overall accuracies(and Kappa statistics) were of 68.86%(0.63), 91.32%(0.79), 90.66%(0.88) and 91.88%(0.89) for 1972, 1987, 2000 and 2014, respectively. The spatio-temporal analyses indicated that forests, woodlands and savannahs dominated the landscapes during the four dates, though constant areal decreases were observed. The most important dynamic process was the decline of woodlands with an average annual net loss rate of –2%. Meanwhile, the most important land transformation occurred during the transition 2000–2014, due to anthropogenic pressures. Though the most important loss of vegetation greenness occurred in the unprotected areas, the overall analyses of change indicated a declining trend of land cover quality and an increasing landscape fragmentation. Sustainable conservation strategies should be promoted while focusing restoration attention on degraded lands and fragmented ecosystems in order to support rural livelihood and biodiversity conservation.