A study was performed to develop hydrological river basin coding for Turkish river basins using the pfafstetter coding system. The coding system developed in this study is based on the combination of ECRINS and pfafst...A study was performed to develop hydrological river basin coding for Turkish river basins using the pfafstetter coding system. The coding system developed in this study is based on the combination of ECRINS and pfafstetter methods. River Basin District concepts were incorporated in this method so that it can be applicable to the management of Turkish River Basins. Developed hydrological river basin coding system is flexible, versatile and fits to all types of basins in Turkey. In order to show the efficiency of the coding system, it was applied to three river basins each of which has different hydrological and topographical features from the others. The basins used for the application of the coding system have complex features such as being transboundary basins, or being coastal basins whose discharge is not joining to the main drainage system, or being a closed basin discharging to an inland lake. Using the developed hydrological river basin coding defines river basin boundaries accurately, preventing conflicts in sectorial water allocation that are caused by uncertainty in the locations of water sources, producing a base for determining water potential and estimating extreme hydrological events of the basin, producing a basis for the prevention of water disputes among stakeholders within the basin, and helping implementation of Integrated Water Resources Management (IWRM) at basin level.展开更多
High-quality rainfall information is critical for accurate simulation of runoff and water cycle processes on the land surface. In situ monitoring of rainfall has a very limited utility at the regional and global scale...High-quality rainfall information is critical for accurate simulation of runoff and water cycle processes on the land surface. In situ monitoring of rainfall has a very limited utility at the regional and global scale because of the high temporal and spatial variability of rainfall. As a step toward overcoming this problem, microwave remote sensing observations can be used to retrieve the temporal and spatial rainfall coverage because of their global availability and frequency of measurement. This paper addresses the question of whether remote sensing rainfall estimates over a catchment can be used for water balance computations in the distributed hydrological model. The TRMM 3B42V6 rainfall product was introduced into the hydrological cycle simulation of the Yangtze River Basin in South China. A tool was developed to interpolate the rain gauge observations at the same temporal and spatial resolution as the TRMM data and then evaluate the precision of TRMM 3B42V6 data from 1998 to 2006. It shows that the TRMM 3B42V6 rainfall product was reliable and had good precision in application to the Yangtze River Basin. The TRMM 3B42V6 data slightly overestimated rainfall during the wet season and underestimated rainfall during the dry season in the Yangtze River Basin. Results suggest that the TRMM 3B42V6 rainfall product can be used as an alternative data source for large-scale distributed hydrological models.展开更多
1∶250 000 contour was used to generate 0. 0012°( 4. 32 s) of grid DEM of the basin,to simulate flow line of slope surface and gradient line,automatically draw valley line,and count catchment area at slope surf...1∶250 000 contour was used to generate 0. 0012°( 4. 32 s) of grid DEM of the basin,to simulate flow line of slope surface and gradient line,automatically draw valley line,and count catchment area at slope surface point. We organized data at the sections with 100 m of interval to simulate water system,establish coding system of river network,and build associated point with slope surface system. " Hillside hydrology" theory simulated subsurface flow between surface water and groundwater,and used catchment water at slope surface point,gradient,valley line and depletion curve to study soil moisture distribution in the basin.展开更多
The authors analyze climate extremes indices (CEI) of rainfall over the largest basins of the Brazilian territory: Amazon (AMA), S?o Francisco (SF), Tocantins (TO) and Paraná (PAR) rivers. The CEI represent the f...The authors analyze climate extremes indices (CEI) of rainfall over the largest basins of the Brazilian territory: Amazon (AMA), S?o Francisco (SF), Tocantins (TO) and Paraná (PAR) rivers. The CEI represent the frequency of heavy precipitation events (R30mm and R95p) and short duration extreme rainfall (RX5day and RX1day). Droughts (CDDd) are identified based on two indicators: The longest dry period (CDD) and the annual cycle. The results demonstrate that CDDd, RX1day and RX5day occurred with more frequency and intensity in SF basin during El Ni?o events. CDDd was of greater magnitude in the TO basin during La Ni?a events, while an increase of RX1day occurred in El Ni?o. The strong El Ni?o events (1983 and 1997) caused more intense and frequent RX1day and R30mm over the PAR basin. Amazon droughts occurred in two out of the six El Ni?o events. Moreover, the relationship between the positive (negative) sea superficial temperatures anomalies in North (South) Tropical Atlantic and drought in AMA basin was corroborated. A gradual warming of SST was observed at the start of 2003 until it achieved a maximum in 2005 associated with the southwestern Amazon drought. The second highest anomaly of SST was in 2010 linked with drought that was more spatially extensive than the 2005 drought. The spatial distribution of annual trends showed a significant increase of CDD in south-eastern AMA, Upper SF, northern PAR and throughout the TO basins. R20mm, RX1day and RX5day tend to increase significantly in southwestern (northeast) PAR (AMA) and northwestern TO basins. Comparisons between CEI derived from daily precipitation data from Climate Prediction Center (CPCp) and of the ETA_HadCM3 model showed that the model overestimated RX1day, RX5day and CDD, in the four basins. Future scenarios show that dry periods will occur with greatest magnitude in all the basins until 2071-2099 time slice, while RX1day will be more intense in the TO and SF basins.展开更多
In recent years, global reanalysis weather data has been widely used in hydrological modeling around the world, but the results of simulations vary greatly. To consider the applicability of Climate Forecast System Rea...In recent years, global reanalysis weather data has been widely used in hydrological modeling around the world, but the results of simulations vary greatly. To consider the applicability of Climate Forecast System Reanalysis(CFSR) data in the hydrologic simulation of watersheds, the Bahe River Basin was used as a case study. Two types of weather data(conventional weather data and CFSR weather data) were considered to establish a Soil and Water Assessment Tool(SWAT) model, which was used to simulate runoff from 2001 to 2012 in the basin at annual and monthly scales. The effect of both datasets on the simulation was assessed using regression analysis, Nash-Sutcliffe Efficiency(NSE), and Percent Bias(PBIAS). A CFSR weather data correction method was proposed. The main results were as follows.(1) The CFSR climate data was applicable for hydrologic simulation in the Bahe River Basin(R^2 of the simulated results above 0.50, NSE above 0.33, and |PBIAS| below 14.8. Although the quality of the CFSR weather data is not perfect, it achieved a satisfactory hydrological simulation after rainfall data correction.(2) The simulated streamflow using the CFSR data was higher than the observed streamflow, which was likely because the estimation of daily rainfall data by CFSR weather data resulted in more rainy days and stronger rainfall intensity than was actually observed. Therefore, the data simulated a higher base flow and flood peak discharge in terms of the water balance, except for some individual years.(3) The relation between the CFSR rainfall data(x) and the observed rainfall data(y) could berepresented by a power exponent equation: y=1.4789x0.8875(R2=0.98,P〈0.001). There was a slight variation between the fitted equations for each station. The equation provides a theoretical basis for the correction of CFSR rainfall data.展开更多
文摘A study was performed to develop hydrological river basin coding for Turkish river basins using the pfafstetter coding system. The coding system developed in this study is based on the combination of ECRINS and pfafstetter methods. River Basin District concepts were incorporated in this method so that it can be applicable to the management of Turkish River Basins. Developed hydrological river basin coding system is flexible, versatile and fits to all types of basins in Turkey. In order to show the efficiency of the coding system, it was applied to three river basins each of which has different hydrological and topographical features from the others. The basins used for the application of the coding system have complex features such as being transboundary basins, or being coastal basins whose discharge is not joining to the main drainage system, or being a closed basin discharging to an inland lake. Using the developed hydrological river basin coding defines river basin boundaries accurately, preventing conflicts in sectorial water allocation that are caused by uncertainty in the locations of water sources, producing a base for determining water potential and estimating extreme hydrological events of the basin, producing a basis for the prevention of water disputes among stakeholders within the basin, and helping implementation of Integrated Water Resources Management (IWRM) at basin level.
基金supported by the National Basic Research Program of China (the 973 Program,Grant No.2010CB951101)the National Natural Science Foundation of China (Grants No. 50979022 and 50679018)+2 种基金the Program for Changjiang Scholars and Innovative Research Teams in Universities (Grant No. IRT0717)the Special Fund of the State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering of Hohai University (Grant No. 1069-50986312)the Open Fund Approval of the State Key Laboratory of Hydraulics and Mountain River Engineering of Sichuan University (Grant No. SKLH-OF-0807)
文摘High-quality rainfall information is critical for accurate simulation of runoff and water cycle processes on the land surface. In situ monitoring of rainfall has a very limited utility at the regional and global scale because of the high temporal and spatial variability of rainfall. As a step toward overcoming this problem, microwave remote sensing observations can be used to retrieve the temporal and spatial rainfall coverage because of their global availability and frequency of measurement. This paper addresses the question of whether remote sensing rainfall estimates over a catchment can be used for water balance computations in the distributed hydrological model. The TRMM 3B42V6 rainfall product was introduced into the hydrological cycle simulation of the Yangtze River Basin in South China. A tool was developed to interpolate the rain gauge observations at the same temporal and spatial resolution as the TRMM data and then evaluate the precision of TRMM 3B42V6 data from 1998 to 2006. It shows that the TRMM 3B42V6 rainfall product was reliable and had good precision in application to the Yangtze River Basin. The TRMM 3B42V6 data slightly overestimated rainfall during the wet season and underestimated rainfall during the dry season in the Yangtze River Basin. Results suggest that the TRMM 3B42V6 rainfall product can be used as an alternative data source for large-scale distributed hydrological models.
文摘1∶250 000 contour was used to generate 0. 0012°( 4. 32 s) of grid DEM of the basin,to simulate flow line of slope surface and gradient line,automatically draw valley line,and count catchment area at slope surface point. We organized data at the sections with 100 m of interval to simulate water system,establish coding system of river network,and build associated point with slope surface system. " Hillside hydrology" theory simulated subsurface flow between surface water and groundwater,and used catchment water at slope surface point,gradient,valley line and depletion curve to study soil moisture distribution in the basin.
基金funding from the projects Rede CLIMA,the National Institute of Science and Technology for Climate Change(INCTCC),from the FAPESP—Assessment of Impacts and Vulnerability to Climate Change in Brazil and strategies for Adaptation options project(Ref.2008/58161-1).
文摘The authors analyze climate extremes indices (CEI) of rainfall over the largest basins of the Brazilian territory: Amazon (AMA), S?o Francisco (SF), Tocantins (TO) and Paraná (PAR) rivers. The CEI represent the frequency of heavy precipitation events (R30mm and R95p) and short duration extreme rainfall (RX5day and RX1day). Droughts (CDDd) are identified based on two indicators: The longest dry period (CDD) and the annual cycle. The results demonstrate that CDDd, RX1day and RX5day occurred with more frequency and intensity in SF basin during El Ni?o events. CDDd was of greater magnitude in the TO basin during La Ni?a events, while an increase of RX1day occurred in El Ni?o. The strong El Ni?o events (1983 and 1997) caused more intense and frequent RX1day and R30mm over the PAR basin. Amazon droughts occurred in two out of the six El Ni?o events. Moreover, the relationship between the positive (negative) sea superficial temperatures anomalies in North (South) Tropical Atlantic and drought in AMA basin was corroborated. A gradual warming of SST was observed at the start of 2003 until it achieved a maximum in 2005 associated with the southwestern Amazon drought. The second highest anomaly of SST was in 2010 linked with drought that was more spatially extensive than the 2005 drought. The spatial distribution of annual trends showed a significant increase of CDD in south-eastern AMA, Upper SF, northern PAR and throughout the TO basins. R20mm, RX1day and RX5day tend to increase significantly in southwestern (northeast) PAR (AMA) and northwestern TO basins. Comparisons between CEI derived from daily precipitation data from Climate Prediction Center (CPCp) and of the ETA_HadCM3 model showed that the model overestimated RX1day, RX5day and CDD, in the four basins. Future scenarios show that dry periods will occur with greatest magnitude in all the basins until 2071-2099 time slice, while RX1day will be more intense in the TO and SF basins.
基金International Partnership Program of Chinese Academy of Sciences,No.131551KYSB20160002 National Natural Science Foundation of China,No.41401602+2 种基金 Natural Science Basic Research Plan in Shaanxi Province of China,No.2014JQ2-4021 Key Scientific and Technological Innovation Team Plan of Shaanxi Province,No.2014KCT-27 Graduate Student Innovation Project of Northwest University,No.YZZ15011
文摘In recent years, global reanalysis weather data has been widely used in hydrological modeling around the world, but the results of simulations vary greatly. To consider the applicability of Climate Forecast System Reanalysis(CFSR) data in the hydrologic simulation of watersheds, the Bahe River Basin was used as a case study. Two types of weather data(conventional weather data and CFSR weather data) were considered to establish a Soil and Water Assessment Tool(SWAT) model, which was used to simulate runoff from 2001 to 2012 in the basin at annual and monthly scales. The effect of both datasets on the simulation was assessed using regression analysis, Nash-Sutcliffe Efficiency(NSE), and Percent Bias(PBIAS). A CFSR weather data correction method was proposed. The main results were as follows.(1) The CFSR climate data was applicable for hydrologic simulation in the Bahe River Basin(R^2 of the simulated results above 0.50, NSE above 0.33, and |PBIAS| below 14.8. Although the quality of the CFSR weather data is not perfect, it achieved a satisfactory hydrological simulation after rainfall data correction.(2) The simulated streamflow using the CFSR data was higher than the observed streamflow, which was likely because the estimation of daily rainfall data by CFSR weather data resulted in more rainy days and stronger rainfall intensity than was actually observed. Therefore, the data simulated a higher base flow and flood peak discharge in terms of the water balance, except for some individual years.(3) The relation between the CFSR rainfall data(x) and the observed rainfall data(y) could berepresented by a power exponent equation: y=1.4789x0.8875(R2=0.98,P〈0.001). There was a slight variation between the fitted equations for each station. The equation provides a theoretical basis for the correction of CFSR rainfall data.