In the present study seismic wave propagation in heterogeneous media is numerically simulated by using the pseudospectral method with the staggered grid RFFT differentiation in order to clarify the cause for the compl...In the present study seismic wave propagation in heterogeneous media is numerically simulated by using the pseudospectral method with the staggered grid RFFT differentiation in order to clarify the cause for the complicated distribution characteristics of strong ground motion in regions with basin structure. The results show that the maximum amplitudes of simulated ground acceleration waveforms are closely related to the basin structure. Interference of seismic waves in the basin strongly affects the distribution of maximum seismic waveforms, which may result in peak disasters during earthquakes. Peak disasters might be away from basin boundaries or earthquake faults. Seismic energy transmitted into the basin from the bedrock can hardly penetrate the bottom of the basin and then travel back into the bedrock region. The seismic energy is absorbed by basin media, and transferred into the kinematical energy of seismic waves with great amplitude in the basin. Seismic waves between basins may result in serious damage to buildings over the basin. This is significant for aseismatic research. Geological surveys in and around urban areas would benefit aseismatic research and mitigation of seismic disasters of a city. Such geological surveys should involve seismic velocity structure in the media above the bedrock besides such subjects as active faults and geological structure.展开更多
The Bodong Sag,located in the Bohai Sea,offshore China,is one of the most petroliferous basins in China.Based on three dimensional seismic reflection data and time slice data,we analyze the fault system of the Bodong ...The Bodong Sag,located in the Bohai Sea,offshore China,is one of the most petroliferous basins in China.Based on three dimensional seismic reflection data and time slice data,we analyze the fault system of the Bodong area in detail,establish the fault structure pattern of different types and summarize the distribution of the fault system.It is concluded that the development characteristics of the Cenozoic fault system are in accordance with the dextral stress field of the Tanlu Fault,which displayed a brush structure with NNE strike-slip faults as its principal faults,NE-trending extensional faults as secondary faults and EW-trending faults as minor faults.Faults can be divided into (1) strike-slip type,(2) extensional type,(3) strike-slip extensional type and (4) extensional strike-slip type.The spatial structures of different faults have obvious differences because of the fault properties and activity intensity.The fault system at different stages shows tremendous differences because of the transition of the Tanlu Fault from sinistral strike-slip to dextral strike-slip,the transition between extension and strike-slip,and the transition from mantle upwelling to thermal subsidence.According to the controlling effect of faults on basin structure,the Cenozoic basin experienced four evolutionary stages,(a) transition stage from sinistral strike-slip to dextral strike-slip,(b) strike-slip extensional faulted stage,(c) extensional strike-slip faulted stage and (d) strike-slip depression stage.The identification of temporal and spatial differences of faults could be used as a significant guideline for oil and gas exploration in the Bodong area.展开更多
In this paper,we use high-precision airborne gravity and magnetic data to study the geophysical characteristics of the western slope of the Songliao Basin and its adjacent areas and evaluate the resource potential.We ...In this paper,we use high-precision airborne gravity and magnetic data to study the geophysical characteristics of the western slope of the Songliao Basin and its adjacent areas and evaluate the resource potential.We performed an in-depth analysis of three aspects of the basin characteristics:the characteristics of residual strata,the development characteristics of faults,and the distribution characteristics of magmatic rocks.Next,we analyzed the forming background of organic(oil and gas)resources and inorganic(uranium ore and hot dry rock)resources.The results showed that the new Upper Paleozoic strata have significant differences in different regions of the study area(with a thickness of 0–8000 m),mainly distributed in the eastern and northern regions but absent in the middle eastern and western regions.Furthermore,the thickness and depth of the Mesozoic layer varied between the eastern and western regions;it was thicker and deeper in the middle eastern region but thinner and shallower in the western region,and it is absent in most western regions.The main faults in the region are in the north–northeast(NNE)direction.Faults in the NE–NNE and NW directions jointly controlled the morphology of the secondary structural units.Magmatic rocks are relatively developed in the middle and eastern parts of the region.Most magmatic rocks are distributed along the faults and their sides,clearly reflecting the control of the faults on magmatic activities.The western slope of the Songliao basin and its surroundings have a favorable geological setting for the accumulation(mineralization)of oil,gas,shale oil,hot dry rock,and uranium ore.It is conducive to oil and gas exploration of deep new strata and collaborative exploration of multiple resources.展开更多
This paper, for the first time, deals with a more systematic study of the structures in the Bohai petroliferous area that covers nearly one third of the Bohai Bay basin. The study mainly involves the effects of preexi...This paper, for the first time, deals with a more systematic study of the structures in the Bohai petroliferous area that covers nearly one third of the Bohai Bay basin. The study mainly involves the effects of preexisting basement faults on the basin formation, the characteristics of basin geometry and kinetics, the modelling of the tectonic-thermal history, the polycyclicity and heterogeneity in the structural evolution and the natural seismic tomographic images of the crust and upper mantle. The authors analyze the features of the dynamic evolution of the basin in the paper and point out that the basin in the Bohai petroliferous area is an extensional pull-apart basin.展开更多
The concept of the three-layer structure of continental basins is presented based on the characteristics of layered structure of basins. The reservoir could be classified into accumulation system assemblage, accumulat...The concept of the three-layer structure of continental basins is presented based on the characteristics of layered structure of basins. The reservoir could be classified into accumulation system assemblage, accumulation system, accumulation assemblage and reservoir. This paper discusses the characteristics of hydrocarbon accumulation system assemblages of the Zhanhua Depression, which include four kinds of genetic patterns: (1) buried-hill hydrocarbon accumulation system assemblage; (2) self-sourced accumulation system assemblage from the upper interval of member 4 to member 1 of Shahejie formation; (3) transition accumulation system assemblage from member 1 of the Shahejie formation to Dongying formation and (4) externally sourccd accumulation system assemblage in the late Tertiary. The hydrocarbon-source transport network layer consisted of faults and unconformities, which connected with the reservoir layer.展开更多
Based on seismic and drilling data in the study area,the geological structure and kinematic process of the Termit rift basin were studied using seismic profile interpretation and balanced restoration to find out the d...Based on seismic and drilling data in the study area,the geological structure and kinematic process of the Termit rift basin were studied using seismic profile interpretation and balanced restoration to find out the dynamic mechanism of the basin.(1)The geological structure of the Termit Basin is represented as a narrow rift basin,with development of series of structural styles in extensional,extensional strike-slip and compressional stress setting.On plane,it is narrow in the north and wide in the south,and transitions from graben to half-graben from north to south;it features a graben controlled by the boundary faults in the north and a fault-overlapped half-graben in the south.(2)Before the Cretaceous,a series of hidden faults developed in the West African rift system,which laid the foundation for the development location and distribution direction of the Termit Basin;during the Cretaceous to Paleogene periods,the basin experienced two phases of rifting in Early Cretaceous and Paleogene,which controlled the initial structure and current structural shape of the basin respectively;during the Neogene to Quaternary,the basin was subjected to weak transformation.(3)In the Precambrian,the Pan-African movement gave rise to a narrow and long weak zone within the African plate,which provided the pre-existing structural conditions for the formation of the Termit Basin.In the Early Cretaceous,affected by the South Atlantic rifting,the Pan African weak zone was reactivated,resulting in the first stage of rifting and the basic structural framework of the Termit Basin.In the Paleogene,affected by the subduction and convergence of the Neo-Tethys Ocean,the African-Arabian plate extended in near E-W trending,and the Termit Basin experienced the second stage of rifting.The oblique extension in this period caused intense structural differentiation,and the current structural pattern of alternate uplifts and depressions took shape gradually.展开更多
Based on a synthetic geological study of drilling, well logging and core observations, two main genetic types of Chang 9sand body in Odors Basin were recognized, which included two effects, that is, delta environment ...Based on a synthetic geological study of drilling, well logging and core observations, two main genetic types of Chang 9sand body in Odors Basin were recognized, which included two effects, that is, delta environment and tractive current effects that lead to the development of mouth bar, distal bar, sheet sand and other sand bodies of subaerial and subaqueous distributary channel,natural levee, flood fan and delta front, and shore-shallow lake environment and lake flow transformation effects that result in the development of sandy beach bar, sheet sand and other sand bodies. Chang 9 sand body mainly developed five basic vertical structures, namely box shape, campaniform, infundibuliform, finger and dentoid. The vertical stacking patterns of multilayer sand body was complex, and the common shapes included box shape + box shape, campaniform + campaniform, campaniform + box shape, infundibuliform + infundibuliform, campaniform + infundibuliform, box shape + campaniform, box shape + infundibuliform,and finger + finger. Based on the analysis on major dominating factors of vertical structure of sand body, sedimentary environment,sedimentary facies and rise, fall and cycle of base level are identified as the major geological factors that control the vertical structure of single sand body as well as vertical stacking patterns and distribution of multistory sand bodies.展开更多
The Pearl River Mouth Basin(PRMB)is an important area for studying the evolution of continental marginal basins in the northern South China Sea(SCS),but the structural variability and spatiotemporal rifting process re...The Pearl River Mouth Basin(PRMB)is an important area for studying the evolution of continental marginal basins in the northern South China Sea(SCS),but the structural variability and spatiotemporal rifting process remains poorly understood.This study investigates the differential structural features of the eastern,middle and western PRMB,as well as the extensional deformation laws in operation during the rifting stage,according to an integrated analysis of geometric characteristics and kinematic parameters,i.e.,horizontal displacement and stretching factors of basin and crust.The PRMB underwent at least three phases of intense extension,which varied in time and space.(1)During the middle Eocene,most sags in the PRMB were intensely stretched and high-angle planar to listric boundary faults controlled the wedge-shaped stratigraphic geometry.(2)During the late Eocene-to-early Oligocene,the stratigraphic geometry of the sags was slightly wedge-shaped and continuously controlled by boundary faults,however,the extensional strength decreased relatively in the Northern depression zone,but increased in the Southern depression zone.(3)During the late Oligocene,the extension was extremely weak in the northeast PRMB,but relatively strong in the southwest PRMB,leading to tabular stratigraphic geometry in the northeast PRMB,but localized slightly wedge-shaped stratigraphic geometry in the southwest.The southwest PRMB still underwent relatively strong extension during the early Miocene.The southwest PRMB that was induced by a small-scale localized mantle convection system constantly rifted during the late Oligocene,controlled by the weak lithosphere,westward(southwestward)diachronous opening and southward jump of the ocean ridge.The applied quantitative parameters and spatiotemporal rifting process may be used as a reference with which to study the segmented continental margin rifts.展开更多
The North Yellow Sea Basin is a Mesozoic and Cenozoic basin. Based on basin-margin facies, sedimentary thinning, size and shape of the basin and vitrinite reflectance, North Yellow Sea Basin is not a residual basin. A...The North Yellow Sea Basin is a Mesozoic and Cenozoic basin. Based on basin-margin facies, sedimentary thinning, size and shape of the basin and vitrinite reflectance, North Yellow Sea Basin is not a residual basin. Analysis of the development of the basin's three structural layers, self-contained petroleum systems, boundary fault activity, migration of the Mesozoic--Cenozoic sedimentation centers, different basin structures formed during different periods, and superposition of a two-stage extended basin and one-stage depression basin, the North Yellow Sea Basin is recognized as a superimposed basin.展开更多
Based on first-hand material from the geological exploration of petroleum,we made a detailed study of the tectonic development in the Early Cretaceous and the distribution of basement rifts in the Songliao Basin.The s...Based on first-hand material from the geological exploration of petroleum,we made a detailed study of the tectonic development in the Early Cretaceous and the distribution of basement rifts in the Songliao Basin.The sedimentary characteristics of this epoch and the tectono-paleogeography of the basin were expounded.The results show that in its early stages,the Songliao Basin was characterized by a detached faulted basin in which mainly lake facies developed among mountains.It became gradually one lake during the late stages of the Early Cretaceous.During this period,the fault activity in the Songliao Basin changed from a turbulent to a quiet development,the water area from small separated lakes to one large lake,in which the sedimentary facies were divided into asymmetric eastern and western parts.In the basin a volcanic clastic rock-alluvial fan system developed and a fan delta-lake-small delta-river system was mainly deposired.Our research also shows that the basement rifts not only controlled the distribution of fault depressions and the tectonic development in the Early Cretaceous,but had also an effect on the orientation of sedimentation,source area and river system,which determine the tectonopaleogeography of the Early Cretaceous.展开更多
Refering to geological evidences and recent Lincheng-Julu deep seismic reflection profile in the west-central part of North China Basin, it is concluded preliminarily that a low angle detachment structure may exist in...Refering to geological evidences and recent Lincheng-Julu deep seismic reflection profile in the west-central part of North China Basin, it is concluded preliminarily that a low angle detachment structure may exist in the central part of North China depression. Numerical method is used to simulate the influence of hot mantle intrusive bodies to Cenozoic basin tectonic movements. Numerical simulations show that,① The intrusion of hot mantle material has led to an extensional stress state in the upper crust in central North China depression. As time increasing, the extensional stress state changed slightly in the upper crust and was in keeping with the normal faulting tectonics in the upper crust in depression area. ② In Cenozoic era, under the effects of magmatic intrusion and the resistance of Taihang Mountain, the weak zone produced by the Mesozoic thrust faulting would become a detachment structure.③ With the elapse of time, the horizontal compressive stress gradually concentrated in the median crust, and the concentration of stress may generate strike-slip earthquakes in the median crust above the intrusive body.展开更多
Remnant ocean basin is a key to understand the plate suturing and subsequent uplift and erosion of orogen. The Bay of Bengal Basin (BOBB) provides a typical example to analyze the remnant ocean basin structures, evo...Remnant ocean basin is a key to understand the plate suturing and subsequent uplift and erosion of orogen. The Bay of Bengal Basin (BOBB) provides a typical example to analyze the remnant ocean basin structures, evolution, and relationships between depositional filling and uplifting of the Himalayan Orogen. Thirty-nine seismic profiles as well as interval velocities of well BODC3 were used to compile isopach maps of the basin. Among the seismic data, 26 seismic profiles were applied to estab- lish 8 cross sections. The cross sections suggest the basin is asymmetric, bounded to the west by the eastern continental margin of India (ECMI) with graben-horst and to the east by the Sunda conver- gence margin dominated by trench-arc system. The BOBB is characterized by a prominent down flex- ure structures caused by huge amount of Bengal fan turbidite sediments accumulation. Our isopach maps and chronology data collected from adjacent regions reveal the initial development and fast southward growth of the Bengal fan were related to the early and major stage uplift and erosion of the Himalayan Orogen, respectively. The BOBB has experienced a critical transition from an ocean basin to a remnant ocean basin at Late Oligocene. Such basin structures and evolution features indicate the BOBB provides whole records of oblique convergence of the India and Asia plates, and the early and major stage evolution of the Himalayan Orogen.展开更多
A spectacularly exposed slump is described from a 120-m-long road cut between the villages of Kanod and Deva in the northeastern Jaisalmer Basin of Rajasthan,India.The Upper Jurassic part of the sediments at the outcr...A spectacularly exposed slump is described from a 120-m-long road cut between the villages of Kanod and Deva in the northeastern Jaisalmer Basin of Rajasthan,India.The Upper Jurassic part of the sediments at the outcrop was formed in a near-shore setting and belongs to the Ludharwa Member of the Baisakhi Formation.The 3-m-thick unit shows a number of asymmetric folds and thrust faults leading to an imbrication of partly lithified sandstone beds.The deformation structures allow the reconstruction of a movement towards the northwest.This agrees well with the basin configuration that shows a deepening into this direction.Although the determination of a specific trigger mechanism is difficult for soft-sediment deformation structures,an earthquake caused by synsedimentary tectonics in the basin seems to be the most likely explanation.展开更多
Xi'an ground fractures are the most typical ground fractures in China. Fourteen fractures have nearly divided the historical city into several distinct sections. These fractures are parallel and dis- tributed in NEE ...Xi'an ground fractures are the most typical ground fractures in China. Fourteen fractures have nearly divided the historical city into several distinct sections. These fractures are parallel and dis- tributed in NEE direction at the same interval, with all features exhibiting a down dropping southerly block which extends to connect with the underlying fault. The activities of fractures are primarily ex- pressed as normal faults. The faulted strata are well defined and dislocation displacement increases with depth. Thus, fractures have the characteristics of syn-sedimentary faults, which constitute the hanging wall of the Lintong-Chang'an fault branch system. Crustal thinning caused by the uplifting of upper man- tle provides a power source for extension and stretching along the fracture surface of the upper crust, which results in a series of extensional faults and the suitable conditions for forming massive ground frac- tures. The movement of tectonic blocks influences the normal dip-slipping tension of Lintong-Chang'an fault branches, and produces a series of secondary tectonic fractures adjacent to surface, which constitute the prototype of ground fractures. The recent regional tensile stress produced by modern mainland de- formation, also profoundly influences the current activity of Xi'an ground fractures.展开更多
基金This study is financiallysupported by the 973 Research Project of the Ministry ofScience and Technology (No.2003CB716505) aresearch proiect of Chinese Continental Science DrillingCenter(No.2002207).
文摘In the present study seismic wave propagation in heterogeneous media is numerically simulated by using the pseudospectral method with the staggered grid RFFT differentiation in order to clarify the cause for the complicated distribution characteristics of strong ground motion in regions with basin structure. The results show that the maximum amplitudes of simulated ground acceleration waveforms are closely related to the basin structure. Interference of seismic waves in the basin strongly affects the distribution of maximum seismic waveforms, which may result in peak disasters during earthquakes. Peak disasters might be away from basin boundaries or earthquake faults. Seismic energy transmitted into the basin from the bedrock can hardly penetrate the bottom of the basin and then travel back into the bedrock region. The seismic energy is absorbed by basin media, and transferred into the kinematical energy of seismic waves with great amplitude in the basin. Seismic waves between basins may result in serious damage to buildings over the basin. This is significant for aseismatic research. Geological surveys in and around urban areas would benefit aseismatic research and mitigation of seismic disasters of a city. Such geological surveys should involve seismic velocity structure in the media above the bedrock besides such subjects as active faults and geological structure.
文摘The Bodong Sag,located in the Bohai Sea,offshore China,is one of the most petroliferous basins in China.Based on three dimensional seismic reflection data and time slice data,we analyze the fault system of the Bodong area in detail,establish the fault structure pattern of different types and summarize the distribution of the fault system.It is concluded that the development characteristics of the Cenozoic fault system are in accordance with the dextral stress field of the Tanlu Fault,which displayed a brush structure with NNE strike-slip faults as its principal faults,NE-trending extensional faults as secondary faults and EW-trending faults as minor faults.Faults can be divided into (1) strike-slip type,(2) extensional type,(3) strike-slip extensional type and (4) extensional strike-slip type.The spatial structures of different faults have obvious differences because of the fault properties and activity intensity.The fault system at different stages shows tremendous differences because of the transition of the Tanlu Fault from sinistral strike-slip to dextral strike-slip,the transition between extension and strike-slip,and the transition from mantle upwelling to thermal subsidence.According to the controlling effect of faults on basin structure,the Cenozoic basin experienced four evolutionary stages,(a) transition stage from sinistral strike-slip to dextral strike-slip,(b) strike-slip extensional faulted stage,(c) extensional strike-slip faulted stage and (d) strike-slip depression stage.The identification of temporal and spatial differences of faults could be used as a significant guideline for oil and gas exploration in the Bodong area.
基金funded by the national geological and mineral resources and environment investigation project (no. DD20190028)。
文摘In this paper,we use high-precision airborne gravity and magnetic data to study the geophysical characteristics of the western slope of the Songliao Basin and its adjacent areas and evaluate the resource potential.We performed an in-depth analysis of three aspects of the basin characteristics:the characteristics of residual strata,the development characteristics of faults,and the distribution characteristics of magmatic rocks.Next,we analyzed the forming background of organic(oil and gas)resources and inorganic(uranium ore and hot dry rock)resources.The results showed that the new Upper Paleozoic strata have significant differences in different regions of the study area(with a thickness of 0–8000 m),mainly distributed in the eastern and northern regions but absent in the middle eastern and western regions.Furthermore,the thickness and depth of the Mesozoic layer varied between the eastern and western regions;it was thicker and deeper in the middle eastern region but thinner and shallower in the western region,and it is absent in most western regions.The main faults in the region are in the north–northeast(NNE)direction.Faults in the NE–NNE and NW directions jointly controlled the morphology of the secondary structural units.Magmatic rocks are relatively developed in the middle and eastern parts of the region.Most magmatic rocks are distributed along the faults and their sides,clearly reflecting the control of the faults on magmatic activities.The western slope of the Songliao basin and its surroundings have a favorable geological setting for the accumulation(mineralization)of oil,gas,shale oil,hot dry rock,and uranium ore.It is conducive to oil and gas exploration of deep new strata and collaborative exploration of multiple resources.
文摘This paper, for the first time, deals with a more systematic study of the structures in the Bohai petroliferous area that covers nearly one third of the Bohai Bay basin. The study mainly involves the effects of preexisting basement faults on the basin formation, the characteristics of basin geometry and kinetics, the modelling of the tectonic-thermal history, the polycyclicity and heterogeneity in the structural evolution and the natural seismic tomographic images of the crust and upper mantle. The authors analyze the features of the dynamic evolution of the basin in the paper and point out that the basin in the Bohai petroliferous area is an extensional pull-apart basin.
文摘The concept of the three-layer structure of continental basins is presented based on the characteristics of layered structure of basins. The reservoir could be classified into accumulation system assemblage, accumulation system, accumulation assemblage and reservoir. This paper discusses the characteristics of hydrocarbon accumulation system assemblages of the Zhanhua Depression, which include four kinds of genetic patterns: (1) buried-hill hydrocarbon accumulation system assemblage; (2) self-sourced accumulation system assemblage from the upper interval of member 4 to member 1 of Shahejie formation; (3) transition accumulation system assemblage from member 1 of the Shahejie formation to Dongying formation and (4) externally sourccd accumulation system assemblage in the late Tertiary. The hydrocarbon-source transport network layer consisted of faults and unconformities, which connected with the reservoir layer.
基金Supported by the National Natural Science Foundation of China Enterprise Innovation and Development Joint Fund Project(U19B6003-01)Scientific research and technology development project of China National Petroleum Corporation(2021DJ3103).
文摘Based on seismic and drilling data in the study area,the geological structure and kinematic process of the Termit rift basin were studied using seismic profile interpretation and balanced restoration to find out the dynamic mechanism of the basin.(1)The geological structure of the Termit Basin is represented as a narrow rift basin,with development of series of structural styles in extensional,extensional strike-slip and compressional stress setting.On plane,it is narrow in the north and wide in the south,and transitions from graben to half-graben from north to south;it features a graben controlled by the boundary faults in the north and a fault-overlapped half-graben in the south.(2)Before the Cretaceous,a series of hidden faults developed in the West African rift system,which laid the foundation for the development location and distribution direction of the Termit Basin;during the Cretaceous to Paleogene periods,the basin experienced two phases of rifting in Early Cretaceous and Paleogene,which controlled the initial structure and current structural shape of the basin respectively;during the Neogene to Quaternary,the basin was subjected to weak transformation.(3)In the Precambrian,the Pan-African movement gave rise to a narrow and long weak zone within the African plate,which provided the pre-existing structural conditions for the formation of the Termit Basin.In the Early Cretaceous,affected by the South Atlantic rifting,the Pan African weak zone was reactivated,resulting in the first stage of rifting and the basic structural framework of the Termit Basin.In the Paleogene,affected by the subduction and convergence of the Neo-Tethys Ocean,the African-Arabian plate extended in near E-W trending,and the Termit Basin experienced the second stage of rifting.The oblique extension in this period caused intense structural differentiation,and the current structural pattern of alternate uplifts and depressions took shape gradually.
基金Project(2011D-5006-0105)supported by the Technology Innovation Foundation of CNPC,ChinaProject(SZD0414)supported by the Key Discipline of Mineral Prospecting and Exploration of Sichuan Province,China
文摘Based on a synthetic geological study of drilling, well logging and core observations, two main genetic types of Chang 9sand body in Odors Basin were recognized, which included two effects, that is, delta environment and tractive current effects that lead to the development of mouth bar, distal bar, sheet sand and other sand bodies of subaerial and subaqueous distributary channel,natural levee, flood fan and delta front, and shore-shallow lake environment and lake flow transformation effects that result in the development of sandy beach bar, sheet sand and other sand bodies. Chang 9 sand body mainly developed five basic vertical structures, namely box shape, campaniform, infundibuliform, finger and dentoid. The vertical stacking patterns of multilayer sand body was complex, and the common shapes included box shape + box shape, campaniform + campaniform, campaniform + box shape, infundibuliform + infundibuliform, campaniform + infundibuliform, box shape + campaniform, box shape + infundibuliform,and finger + finger. Based on the analysis on major dominating factors of vertical structure of sand body, sedimentary environment,sedimentary facies and rise, fall and cycle of base level are identified as the major geological factors that control the vertical structure of single sand body as well as vertical stacking patterns and distribution of multistory sand bodies.
基金supported by the National Natural Science Foundation of China(Grant Nos.41572202 and 41902124).
文摘The Pearl River Mouth Basin(PRMB)is an important area for studying the evolution of continental marginal basins in the northern South China Sea(SCS),but the structural variability and spatiotemporal rifting process remains poorly understood.This study investigates the differential structural features of the eastern,middle and western PRMB,as well as the extensional deformation laws in operation during the rifting stage,according to an integrated analysis of geometric characteristics and kinematic parameters,i.e.,horizontal displacement and stretching factors of basin and crust.The PRMB underwent at least three phases of intense extension,which varied in time and space.(1)During the middle Eocene,most sags in the PRMB were intensely stretched and high-angle planar to listric boundary faults controlled the wedge-shaped stratigraphic geometry.(2)During the late Eocene-to-early Oligocene,the stratigraphic geometry of the sags was slightly wedge-shaped and continuously controlled by boundary faults,however,the extensional strength decreased relatively in the Northern depression zone,but increased in the Southern depression zone.(3)During the late Oligocene,the extension was extremely weak in the northeast PRMB,but relatively strong in the southwest PRMB,leading to tabular stratigraphic geometry in the northeast PRMB,but localized slightly wedge-shaped stratigraphic geometry in the southwest.The southwest PRMB still underwent relatively strong extension during the early Miocene.The southwest PRMB that was induced by a small-scale localized mantle convection system constantly rifted during the late Oligocene,controlled by the weak lithosphere,westward(southwestward)diachronous opening and southward jump of the ocean ridge.The applied quantitative parameters and spatiotemporal rifting process may be used as a reference with which to study the segmented continental margin rifts.
基金supported by the National Important Special Project of Science and Technology of China(No.GZH200200301)
文摘The North Yellow Sea Basin is a Mesozoic and Cenozoic basin. Based on basin-margin facies, sedimentary thinning, size and shape of the basin and vitrinite reflectance, North Yellow Sea Basin is not a residual basin. Analysis of the development of the basin's three structural layers, self-contained petroleum systems, boundary fault activity, migration of the Mesozoic--Cenozoic sedimentation centers, different basin structures formed during different periods, and superposition of a two-stage extended basin and one-stage depression basin, the North Yellow Sea Basin is recognized as a superimposed basin.
文摘Based on first-hand material from the geological exploration of petroleum,we made a detailed study of the tectonic development in the Early Cretaceous and the distribution of basement rifts in the Songliao Basin.The sedimentary characteristics of this epoch and the tectono-paleogeography of the basin were expounded.The results show that in its early stages,the Songliao Basin was characterized by a detached faulted basin in which mainly lake facies developed among mountains.It became gradually one lake during the late stages of the Early Cretaceous.During this period,the fault activity in the Songliao Basin changed from a turbulent to a quiet development,the water area from small separated lakes to one large lake,in which the sedimentary facies were divided into asymmetric eastern and western parts.In the basin a volcanic clastic rock-alluvial fan system developed and a fan delta-lake-small delta-river system was mainly deposired.Our research also shows that the basement rifts not only controlled the distribution of fault depressions and the tectonic development in the Early Cretaceous,but had also an effect on the orientation of sedimentation,source area and river system,which determine the tectonopaleogeography of the Early Cretaceous.
文摘Refering to geological evidences and recent Lincheng-Julu deep seismic reflection profile in the west-central part of North China Basin, it is concluded preliminarily that a low angle detachment structure may exist in the central part of North China depression. Numerical method is used to simulate the influence of hot mantle intrusive bodies to Cenozoic basin tectonic movements. Numerical simulations show that,① The intrusion of hot mantle material has led to an extensional stress state in the upper crust in central North China depression. As time increasing, the extensional stress state changed slightly in the upper crust and was in keeping with the normal faulting tectonics in the upper crust in depression area. ② In Cenozoic era, under the effects of magmatic intrusion and the resistance of Taihang Mountain, the weak zone produced by the Mesozoic thrust faulting would become a detachment structure.③ With the elapse of time, the horizontal compressive stress gradually concentrated in the median crust, and the concentration of stress may generate strike-slip earthquakes in the median crust above the intrusive body.
基金financially supported by the National Science and Technology Major Project of China(No.2011ZX05030-002-003)
文摘Remnant ocean basin is a key to understand the plate suturing and subsequent uplift and erosion of orogen. The Bay of Bengal Basin (BOBB) provides a typical example to analyze the remnant ocean basin structures, evolution, and relationships between depositional filling and uplifting of the Himalayan Orogen. Thirty-nine seismic profiles as well as interval velocities of well BODC3 were used to compile isopach maps of the basin. Among the seismic data, 26 seismic profiles were applied to estab- lish 8 cross sections. The cross sections suggest the basin is asymmetric, bounded to the west by the eastern continental margin of India (ECMI) with graben-horst and to the east by the Sunda conver- gence margin dominated by trench-arc system. The BOBB is characterized by a prominent down flex- ure structures caused by huge amount of Bengal fan turbidite sediments accumulation. Our isopach maps and chronology data collected from adjacent regions reveal the initial development and fast southward growth of the Bengal fan were related to the early and major stage uplift and erosion of the Himalayan Orogen, respectively. The BOBB has experienced a critical transition from an ocean basin to a remnant ocean basin at Late Oligocene. Such basin structures and evolution features indicate the BOBB provides whole records of oblique convergence of the India and Asia plates, and the early and major stage evolution of the Himalayan Orogen.
基金supported by the Alexander von Humboldt Foundation, Germany [Matthias Alberti]the Department of Science and Technology, India [Dhirendra K.Pandey]the Jagiellonian University, Poland [Alfred Uchman]
文摘A spectacularly exposed slump is described from a 120-m-long road cut between the villages of Kanod and Deva in the northeastern Jaisalmer Basin of Rajasthan,India.The Upper Jurassic part of the sediments at the outcrop was formed in a near-shore setting and belongs to the Ludharwa Member of the Baisakhi Formation.The 3-m-thick unit shows a number of asymmetric folds and thrust faults leading to an imbrication of partly lithified sandstone beds.The deformation structures allow the reconstruction of a movement towards the northwest.This agrees well with the basin configuration that shows a deepening into this direction.Although the determination of a specific trigger mechanism is difficult for soft-sediment deformation structures,an earthquake caused by synsedimentary tectonics in the basin seems to be the most likely explanation.
基金supported by the National Key Basic Research Project of China (No. 2014CB744703)the National Natural Science Foundation of China (Nos. 41790445, 41731066, 41674001, 41202189, 41274004, 41274005)+2 种基金the Natural Science Basic Research Plan of Shaanxi Province, China (No. 2016JM4005)the Special Fund for Basic Scientific Research of Central Universities (Nos. CHD300102268204, CHD2014G1261050, CHD2014G3263014)the China Postdoctoral Science Foundation (No. 2013M530412)
文摘Xi'an ground fractures are the most typical ground fractures in China. Fourteen fractures have nearly divided the historical city into several distinct sections. These fractures are parallel and dis- tributed in NEE direction at the same interval, with all features exhibiting a down dropping southerly block which extends to connect with the underlying fault. The activities of fractures are primarily ex- pressed as normal faults. The faulted strata are well defined and dislocation displacement increases with depth. Thus, fractures have the characteristics of syn-sedimentary faults, which constitute the hanging wall of the Lintong-Chang'an fault branch system. Crustal thinning caused by the uplifting of upper man- tle provides a power source for extension and stretching along the fracture surface of the upper crust, which results in a series of extensional faults and the suitable conditions for forming massive ground frac- tures. The movement of tectonic blocks influences the normal dip-slipping tension of Lintong-Chang'an fault branches, and produces a series of secondary tectonic fractures adjacent to surface, which constitute the prototype of ground fractures. The recent regional tensile stress produced by modern mainland de- formation, also profoundly influences the current activity of Xi'an ground fractures.