期刊文献+
共找到2,868篇文章
< 1 2 144 >
每页显示 20 50 100
Aging Characteristics of Lithium-Ion Battery Under Fast Charging Based on Electrochemical-thermalmechanical Coupling Model
1
作者 Dong-Xu Zuo Pei-Chao Li 《电化学(中英文)》 CAS 北大核心 2024年第9期10-24,共15页
The aging characteristics of lithium-ion battery(LIB)under fast charging is investigated based on an electrochemical-thermal-mechanical(ETM)coupling model.Firstly,the ETM coupling model is established by COMSOL Multip... The aging characteristics of lithium-ion battery(LIB)under fast charging is investigated based on an electrochemical-thermal-mechanical(ETM)coupling model.Firstly,the ETM coupling model is established by COMSOL Multiphysics.Subsequently,a long cycle test was conducted to explore the aging characteristics of LIB.Specifically,the effects of charging(C)rate and cycle number on battery aging are analyzed in terms of nonuniform distribution of solid electrolyte interface(SEI),SEI formation,thermal stability and stress characteristics.The results indicate that the increases in C rate and cycling led to an increase in the degree of nonuniform distribution of SEI,and thus a consequent increase in the capacity loss due to the SEI formation.Meanwhile,the increases in C rate and cycle number also led to an increase in the heat generation and a decrease in the heat dissipation rate of the battery,respectively,which result in a decrease in the thermal stability of the electrode materials.In addition,the von Mises stress of the positive electrode material is higher than that of the negative electrode material as the cycling proceeds,with the positive electrode material exhibiting tensile deformation and the negative electrode material exhibiting compressive deformation.The available lithium ion concentration of the positive electrode is lower than that of the negative electrode,proving that the tensile-type fracture occurring in the positive material under long cycling dominated the capacity loss process.The aforementioned studies are helpful for researchers to further explore the aging behavior of LIB under fast charging and take corresponding preventive measures. 展开更多
关键词 Lithium-ion battery Aging characteristics Fast charging Electrochemical-thermal-mechanical coupling model
下载PDF
Dynamic Characteristics of Long -Span Steel -Concrete CompositeBeam Bridge Based on Vehicle -Bridge Coupling Effect
2
作者 WANG Jianxing CAI Ran +1 位作者 JIA Yumeng ZHANG Jianmeng 《吉首大学学报(自然科学版)》 CAS 2024年第5期45-51,共7页
In order to investigate the effect of vehicle-bridge coupling on the dynamic characteristics of the bridge,a steel-concrete composite beam suspension bridge is taken as the research object,and a three-dimensional spat... In order to investigate the effect of vehicle-bridge coupling on the dynamic characteristics of the bridge,a steel-concrete composite beam suspension bridge is taken as the research object,and a three-dimensional spatial model of the bridge and a biaxial vehicle model of the vehicle are established,and then a vehicle-bridge coupling vibration system is constructed on the basis of the Nemak-βmethod,and the impact coefficients of each part of the bridge are obtained under different bridge deck unevenness and vehicle speed.The simulation results show that the bridge deck unevenness has the greatest influence on the vibration response of the bridge,and the bridge impact coefficient increases along with the increase in the level of bridge deck unevenness,and the impact coefficient of the main longitudinal girder and the secondary longitudinal girder achieves the maximum value when the level 4 unevenness is 0.328 and 0.314,respectively;when the vehicle speed is increased,the vibration response of the bridge increases and then decreases,and the impact coefficient of the bridge in the middle of the bridge at a speed of 60 km/h achieves the maximum value of 0.192. 展开更多
关键词 highway bridge vehicle-bridge coupling effect steel-concrete composite beam suspension bridge dynamic characteristics
下载PDF
Response analysis of NMRG system considering Rb-Xe coupling
3
作者 Yi Zhang Qiyuan Jiang +6 位作者 Bingfeng Sun Jiahu Wei Lin Yang Yongyuan Li Zhiguo Wang Kaiyong Yang Hui Luo 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期390-402,共13页
The dynamic range of the nuclear magnetic resonance gyroscope can be effectively improved through the closedloop control scheme,which is crucial to its application in inertial measurement.This paper presents the analy... The dynamic range of the nuclear magnetic resonance gyroscope can be effectively improved through the closedloop control scheme,which is crucial to its application in inertial measurement.This paper presents the analytical transfer function of Xe closed-loop system in the nuclear magnetic resonance gyroscope considering Rb–Xe coupling effect.It not only considers the dynamic characteristics of the system more comprehensively,but also adds the influence of the practical filters in the gyro signal processing system,which can obtain the accurate response characteristics of signal frequency and amplitude at the same time.The numerical results are compared with an experimentally verified simulation program,which indicate great agreement.The research results of this paper are of great significance to the practical application and development of the nuclear magnetic resonance gyroscope. 展开更多
关键词 nuclear magnetic resonance gyroscope transfer characteristics Rb-Xe coupling
下载PDF
Hardening mechanism and thermal-solid coupling model of laminar plasma surface hardening of 65 Mn steel
4
作者 Xiuquan CAO Lin WANG +2 位作者 Haoming XU Guangzhong HU Chao LI 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第12期110-120,共11页
In the present work,the laminar plasma surface hardening method is employed to enhance the service life of metal components fabricated from 65 Mn steel.The mechanical and wear behaviors of the laminar plasma surface h... In the present work,the laminar plasma surface hardening method is employed to enhance the service life of metal components fabricated from 65 Mn steel.The mechanical and wear behaviors of the laminar plasma surface hardened 65 Mn steel were analyzed.The martensite transition transformation of the temperature of the laminar plasma-hardened 65 ferrite Mn steel was determined by a thermal-solid coupling model.Based on the orthogonal experimental results,the optimal hardening parameters were confirmed.The scanning velocity,quenching distance and arc current are 130 mm/min,50 mm and 120 A,respectively.The pearlites and ferrites are transformed into martensites in the hardened zone,while the ratio of martensite in the heataffected zone decreases with the increase in the hardening depth.Compared to the untreated 65Mn steel,the average hardness increases from 220 HV_(0.2)to 920 HV_(0.2)in the hardened zone and the corresponding absorbed power increases from 118.7 J to 175.5 J.At the same time,the average coefficient of friction(COF)decreases from 0.763 to 0.546,and the wear rate decreases from 5.39×10^(-6)mm^(3)/(N·m)to 2.95×10^(-6)mm^(3)/(N·m),indicating that the wear resistance of 65Mn steel could be significantly improved by using laminar surface hardening.With the same hardening parameters,the depth and width of the hardened zone predicted by the thermal-solid coupling model are 1.85 mm and 11.20 mm,respectively,which are in accordance with the experimental results;depth is 1.83 mm and width is 11.15 mm.In addition,the predicted hardness distributions of the simulation model are in accordance with the experimental results.These results indicate that the simulation model could effectively predict the microstructure characteristics of 65 Mn steel. 展开更多
关键词 65 Mn steel laminar plasma surface hardening hardening mechanism microstructure characteristics thermal-solid coupling model
下载PDF
Effect of Rigid Pitch Motion on Flexible Vibration Characteristics of a Wind Turbine Blade
5
作者 Zhan Wang Liang Li +3 位作者 Long Wang Weidong Zhu Yinghui Li Echuan Yang 《Energy Engineering》 EI 2024年第10期2981-3000,共20页
Adynamic pitch strategy is usually adopted to improve the aerodynamic performance of the blade of awind turbine.The dynamic pitch motion will affect the linear vibration characteristics of the blade.However,these infl... Adynamic pitch strategy is usually adopted to improve the aerodynamic performance of the blade of awind turbine.The dynamic pitch motion will affect the linear vibration characteristics of the blade.However,these influences have not been studied in previous research.In this paper,the influences of the rigid pitch motion on the linear vibration characteristics of a wind turbine blade are studied.The blade is described as a rotating cantilever beam with an inherent coupled rigid-flexible vibration,where the rigid pitch motion introduces a parametrically excited vibration to the beam.Partial differential equations governing the nonlinear coupled pitch-bend vibration are proposed using the generalized Hamiltonian principle.Natural vibration characteristics of the inherent coupled rigid-flexible system are analyzed based on the combination of the assumed modes method and the multi-scales method.Effects of static pitch angle,rotating speed,and characteristics of harmonic pitch motion on flexible natural frequencies andmode shapes are discussed.It shows that the pitch amplitude has a dramatic influence on the natural frequencies of the blade,while the effects of pitch frequency and pith phase on natural frequencies are little. 展开更多
关键词 Pitch motion wind turbine blade inherent rigid-flexible coupling vibration characteristics
下载PDF
Aero-Hydrodynamic Coupled Dynamic Characteristics of Semi-Submersible Floating Offshore Wind Turbines Under Inflow Turbulence 被引量:2
6
作者 JIANG Hai-rui BAI Xing-lan Murilo A.VAZ 《China Ocean Engineering》 SCIE EI CSCD 2023年第4期660-672,共13页
In this study,the frequency characteristics of the turbulent wind and the effects of wind-wave coupling on the low-and high-frequency responses of semi-submersible floating offshore wind turbines(FOWT)are investigated... In this study,the frequency characteristics of the turbulent wind and the effects of wind-wave coupling on the low-and high-frequency responses of semi-submersible floating offshore wind turbines(FOWT)are investigated.Various wave load components,such as first-order wave loads,combined first-and second-order difference-frequency wave loads,combined first-and second-order sum-frequency wave loads,and first-and complete second-order wave loads are taken into consideration,while different turbulent environments are considered in aerodynamic loads.The com-parison is based on time histories and frequency spectra of platform motions and structural load responses and statistical values.The findings indicate that the second-order difference-frequency wave loads will significantly increase the natural frequency of low-frequency motion in the responses of the platform motion and structure load of the semi-submersible platform,which will cause structural fatigue damage.Under the action of turbulent wind,the influences of second-order wave loads on the platform motion and structural load response cannot be ignored,especially under extreme sea conditions.Therefore,in order to evaluate the dynamic responses of semi-submersible FOWT more accurately,the actual environment should be simulated more realistically. 展开更多
关键词 turbulence characteristics floating offshore wind turbines second-order hydrodynamic loads low-and high-frequency responses aero-hydrodynamic coupling
下载PDF
Polyphase Tectonic Events and Cenozoic Basin-Range Coupling in the Tianshan Belt,Northwestern China 被引量:22
7
作者 SHULiangshu WANGBo +3 位作者 YANGFan LUHuafu J.CHARVET S.LAURENT-CHARVET 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2003年第4期457-467,共11页
Studies show that the Tianshan orogenic belt was built in the late stage of the Paleozoic, as evidenced by the Permian red molasses and foreland basins, which are distributed in parallel with the Tianshan belt, indica... Studies show that the Tianshan orogenic belt was built in the late stage of the Paleozoic, as evidenced by the Permian red molasses and foreland basins, which are distributed in parallel with the Tianshan belt, indicating that an intense folding and uplifting event took place. During the Triassic, this orogenic belt was strongly eroded, and basins were further developed. Starting from the Jurassic, a within-plate regional extension occurred, forming a series of Jurassic-Paleogene extensional basins in the peneplaned Tianshan region. Since the Neogene, a collision event between the Indian and the Eurasian plates that took place on the southern side of the Tianshan belt has caused a strong intra-continental orogeny, which is characterized by thrusting and folding. Extremely thick coarse conglomerate and sandy conglomerate of the Xiyu Formation of Neogene System were accumulated unconformably on the Tianshan piedmont. Studies have revealed that the strong compression caused by the Indian-Eurasian collision had a profound influence over the orogenic belt in the hinterland, and MesozoiC-Cenozoic brittle deformed structures superposed on the ductile deformed Paleozoic rocks. The Mesozoic extensional basins were converted into Cenozoic compressional basins. The deformation in the basins is featured by step thrusts and fault-related folds. Statistics of joints show that the principal compressive stress since the Neogene is in a N-S direction. Meanwhile, owing to the underthrusting of the basin toward the orogenic belt, the Paleozoic strata were thrust on the Meso-Cenozoic rocks as tectonic slices, revealing distinct kinematic features in different geologic units. The basin-range coupling zones are characterized by intensive compression, folding and thrusting, accompanied by local sub-E-W-trending strike-slip faults. In the Tianshan region, Cenozoic thrusting is the most common basin-range coupling mode. The folding and faulting of Mesozoic sedimentary rocks, spontaneous combustion of Jurassic coal layers and formation of sintered rocks, the Cenozoic earthquakes and active faulting, and the unique mosaic pattern of basin-range framework of Xinjiang are all products of tectonism since the Neogene. 展开更多
关键词 intracontinental deformation polyphase deformation structure basin-range coupling CENOZOIC Tianshan region
下载PDF
CAD/CAE OF THE WORKING CHARACTERISTICS OF A NEW TYPE OF FLUID COUPLING SHOCK ABSORBER 被引量:4
8
作者 Yang Ping Zhong Yifang Zhou JiSchool of Mechanical Science and Engineering, Huazhong University of Science and Technology,Wuhan 430074, ChinaLiu Yong Guilin Institute of Electronic Technology 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2002年第3期222-227,共6页
For purpose of simulation of the working characteristics of a new type offluid coupling shock absorber for vibration protection of sensitive equipment, a physical model ispresented by analyzing the internal fluid dyna... For purpose of simulation of the working characteristics of a new type offluid coupling shock absorber for vibration protection of sensitive equipment, a physical model ispresented by analyzing the internal fluid dynamic phenomenon with respect to the coupling shockabsorber and implemented in MATLAB software package. Using the model it is possible to evaluate theimportance of different factors for design of the shock absorber. In the meantime, the key-modelmachine is designed for coupling dynamic test. Comparisons with experimental results confirm thevalidity of the model. So the CAD/CAE software has been developed in MATLAB for design andexperimental test of the new coupling shock absorber. 展开更多
关键词 Fluid coupling shock absorber Working characteristics MODEL SIMULATION
下载PDF
Numerical Optimization on Aerodynamic/Stealth Characteristics of Airfoil Based on CFD/CEM Coupling Method 被引量:3
9
作者 Jiang Xiangwen Zhao Qijun +1 位作者 Zhao Guoqing Meng Chen 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2016年第3期274-284,共11页
Based on computational fluid dynamics (CFD)/computational eleetromagnetics method (CEM) coupling method and surrogate model optimization techniques, an integration design method about aerodynamic/stealth character... Based on computational fluid dynamics (CFD)/computational eleetromagnetics method (CEM) coupling method and surrogate model optimization techniques, an integration design method about aerodynamic/stealth characteristics of airfoil is established. The O-type body-fitted and orthogonal grid around airfoil is first generated by using the Poisson equations, in which the points per wave and the normal range satisfy the aerodynamic and electromagnetic calculation accuracy requirement. Then the aerodynamic performance of airfoil is calculated by sol- ving the Navier-Stokes (N-S) equations with Baldwin-Lomax (B-L) turbulence model. The stealth characteristics of airfoil are simulated by using finite volume time domain (FVTD) method based on the Maxwell's equations, Steger-Warming flux splitting and the third-order MUSCL scheme. In addition, based upon the surrogate model optimization technique with full factorial design (FFD) and radial basis function (RBF), an integration design about aerodynamic/stealth characteristics of rotor airfoil is conducted by employing the CFD/CEM coupling meth- od. The aerodynamic/stealth characteristics of NACA series airfoils with different maximum thickness and camber combinations are discussed. Finally, by choosing suitable lift-to-drag ratio and radar cross section (RCS) ampli- tudes of rotor airfoil in four important scattering regions as the objective function and constraint, the compromised airfoil with high lift-to-drag ratio and low scattering characteristics is designed via systemic and comprehensive ana- lyses. 展开更多
关键词 rotor airfoil aerodynamic characteristics stealth characteristics CFD/CEM coupling surrogate modle
下载PDF
Effects of Tightening Torque on Dynamic Characteristics of Low Pressure Rotors Connected by a Spline Coupling 被引量:2
10
作者 Chen Xi Liao Mingfu Li Quankun 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2017年第5期514-523,共10页
A rotor dynamic model is built up for investigating the effects of tightening torque on dynamic characteristics of low pressure rotors connected by a spline coupling.The experimental rotor system is established using ... A rotor dynamic model is built up for investigating the effects of tightening torque on dynamic characteristics of low pressure rotors connected by a spline coupling.The experimental rotor system is established using a fluted disk and a speed sensor which is applied in an actual aero engine for speed measurement.Through simulating calculation and experiments,the effects of tightening torque on the dynamic characteristics of the rotor system connected by a spline coupling including critical speeds,vibration modes and unbalance responses are analyzed.The results show that when increasing the tightening torque,the first two critical speeds and the amplitudes of unbalance response gradually increase in varying degrees while the vibration modes are essentially unchanged.In addition,changing axial and circumferential positions of the mass unbalance can lead to various amplitudes of unbalance response and even the rates of change. 展开更多
关键词 tightening torque dynamic characteristics spline coupling low pressure rotor aero engine
下载PDF
Friction coupling vibration characteristics analysis of aviation hydraulic pipelines considering multi factors 被引量:4
11
作者 Quan Lingxiao Guo Meng +2 位作者 Shi Junqiang Jiao Zongxia Guo Changhong 《High Technology Letters》 EI CAS 2018年第2期180-188,共9页
As the power transmission system of an aircraft,a hydraulic pipeline system is equivalent to the " blood vessel" of the aircraft. With the development of aircraft hydraulic system to high pressure,high speed... As the power transmission system of an aircraft,a hydraulic pipeline system is equivalent to the " blood vessel" of the aircraft. With the development of aircraft hydraulic system to high pressure,high speed and high power ratio,the fluid-structure interaction vibration mechanism of hydraulic pipeline is more complex and the influence of friction coupling on vibration cannot be ignored. The fluid-structure interaction of hydraulic pipeline will lead to system vibration,lower reliability of system operation and even pipeline rupture. Taking a hydraulic pipeline of C919 aircraft wingtip as the research object,a 14-equation model of fluid-structure interaction vibration considering friction coupling effect is established in this paper. The effects of friction and fluid parameters on the pipeline fluid-structure interaction vibration characteristics are studied and verified by experiments. The research results will provide theoretical guidance for the analysis of the pipeline fluid-structure interaction vibration and have important theoretical significance and great engineering value for promoting the localization process of large aircraft. 展开更多
关键词 aviation hydraulic pipeline fluid-structure interaction vibration friction coupling fluid parameters frequency domain characteristics
下载PDF
CHARACTERISTICS OF STRENGTH CONTROL OF ADAPTIVE STRUCTURE WITH ELECTROMECHANICAL COUPLING
12
作者 Sui Yunkang Shao jianyi 《Acta Mechanica Solida Sinica》 SCIE EI 2002年第1期49-61,共13页
Based on the programming method, an electromechanical coupling adaptive statically indeterminate truss structure is controlled for increasing its load capacity. Several main parameters during the process of design of ... Based on the programming method, an electromechanical coupling adaptive statically indeterminate truss structure is controlled for increasing its load capacity. Several main parameters during the process of design of the adaptive structure are selected for a study of its characteristic during the control stage. The curves of each parameter for the effect of control results are plotted and corresponding conclusions are drawn. Thus, the theoretical basis is presented for optimal design, manufacture and control of the adaptive structure. 展开更多
关键词 adaptive structure strength control characteristic research electromechanical coupling selection of parameters
下载PDF
Coupling Characteristics and Control of Dual Mechanical Port Machine with Spoke Type Permanent Magnet Arrangement
13
作者 ZHUANG Xingming SONG Qiang +2 位作者 WEN Xuhui ZHAO Feng FAN Tao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第6期1186-1202,共17页
Dual mechanical port machine(DMPM), as a novel electromechanical energy conversion device, has attracted widespread attention. DMPM with spoke type permanent magnet arrangements(STPM-DMPM), which is one of several... Dual mechanical port machine(DMPM), as a novel electromechanical energy conversion device, has attracted widespread attention. DMPM with spoke type permanent magnet arrangements(STPM-DMPM), which is one of several types of DMPM, has been of interest recently. The unique coupling characteristics of STPM-DMPM are beneficial to improving system performance, but these same characteristics increase the difficulties of control. Now there has been little research about the control of STPM-DMPM, and this has hindered its practical application. Based on a mathematical model of STPM-DMPM, the coupling characteristics and the merits and demerits of such devices are analyzed as applied to a hybrid system. The control strategies for improving the disadvantages and for utilizing the advantage of coupling are researched. In order to weaken the interaction effect of torque outputs in the inner motor and the outer motor that results from coupling in STPM-DMPM, a decoupling control method based on equivalent current control is proposed, and independent torque control for the inner motor and outer motor is achieved. In order to solve address the problem of adequately utilization of coupling, minimizing the overall copper loss of the inner motor and the outer motor of STPM-DMPM is taken as the optimization objective for optimal control, and the purpose of utilizing the coupling adequately and reasonably is achieved. The verification tests of the proposed decoupling control and optimal control strategies are carried out on a prototype STPM-DMPM, and the experimental results show that the interaction effect of torque outputs in the inner motor and the outer motor can be markedly weakened through use of the control method. The overall copper loss of the inner motor and the outer motor can be markedly reduced through use of the optimal control method, while the power output remains unchanged. A breakthrough in the control problem of STPM-DMPM is accomplished by combining the control methods. Good performance in the control of STPM-DMPM will enhance its practicality, particularly as applied to hybrid systems. 展开更多
关键词 dual mechanical port machine spoke type permanent magnet arrangement coupling characteristics decoupling control optimal control
下载PDF
Characteristic of Torsional Vibration of Mill Main Drive Excited by Electromechanical Coupling 被引量:8
14
作者 ZHANG Yifang YAN Xiaoqiang LIN Qihui 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第1期180-187,共8页
In the study of electromechanical coupling vibration of mill main drive system, the influence of electrical system on the mechanical transmission is considered generally, however the research for the mechanism of elec... In the study of electromechanical coupling vibration of mill main drive system, the influence of electrical system on the mechanical transmission is considered generally, however the research for the mechanism of electromechanical interaction is lacked. In order to research the electromechanical coupling resonance of main drive system on the F3 mill in a plant, the cycloconverter and synchronous motor are modeled and simulated by the MTLAB/SIMUL1NK firstly, simulation result show that the current harmonic of the cycloconverter can lead to the pulsating torque of motor output. Then the natural characteristics of the mechanical drive system are calculated by ANSYS, the result show that the modal frequency contains the component which is close to the coupling vibration frequency of 42Hz. According to the simulation result of the mechanical and electrical system, the closed loop feedback model including the two systems are built, and the mechanism analysis of electromechanical coupling presents that there is the interaction between the current harmonic of electrical system and the speed of the mechanical drive system. At last, by building and computing the equivalent nonlinear dynamics model of the mechanical drive system, the dynamic characteristics of system changing with the stiffness, damping coefficient and the electromagnetic torque are obtained. Such electromechanical interaction process is suggested to consider in research of mill vibration, which can induce strong coupling vibration behavior in the rolling mill drive system. 展开更多
关键词 rolling mill vibration current harmonic speed oscillation electromechanical coupling vibration characteristic
下载PDF
Transfer matrix method for determination of the natural vibration characteristics of elastically coupled launch vehicle boosters 被引量:6
15
作者 Laith K.Abbas Qinbo Zhou +1 位作者 Hossam Hendy Xiaoting Rui 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2015年第4期570-580,共11页
The analysis of natural vibration characteristics has become one of important steps of the manufacture and dynamic design in the aerospace industry. This paper presents a new scenario called virtual cutting in the con... The analysis of natural vibration characteristics has become one of important steps of the manufacture and dynamic design in the aerospace industry. This paper presents a new scenario called virtual cutting in the context of the transfer matrix method of linear multibody systems closed- loop topology for computing the free vibration characteristics of elastically coupled flexible launch vehicle boosters. In this approach, the coupled system is idealized as a triple-beam system-like structure coupled by linear translational springs, where a non-uniform free-free Euler-Bemoulli beam is used. A large thrust-to-weight ratio leads to large axial accelera- tions that result in an axial inertia load distribution from nose to tail. Consequently, it causes the development of significant compressive forces along the length of the launch vehicle. Therefore, it is important to take into account this effect in the transverse vibration model. This scenario does not need the global dynamics equations of a system, and it has high computational efficiency and low memory requirements. The validity of the presented scenario is achieved through com- parison to other approaches published in the literature. 展开更多
关键词 Transfer matrix method of linear multibodysystems Free vibration characteristics coupled launchvehicle boosters
下载PDF
Multi-degree-of-freedom coupling dynamic characteristic of TBM disc cutter under shock excitation 被引量:8
16
作者 霍军周 孙晓龙 +2 位作者 李广庆 李涛 孙伟 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第9期3326-3337,共12页
When the tunneling boring machine(TBM) cutterhead tunnels, the excessive vibration and damage are a severe engineering problem, thereby the anti-vibration design is a key technology in the disc cutter system. The stru... When the tunneling boring machine(TBM) cutterhead tunnels, the excessive vibration and damage are a severe engineering problem, thereby the anti-vibration design is a key technology in the disc cutter system. The structure of disc cutter contains many joint interfaces among cutter ring, cutter body, bearings and cutter shaft. On account of the coupling for dynamic contact and the transfer path among joint interface, mechanical behavior of disc cutter becomes extremely complex under the impact of heavy-duty, which puts forward higher requirements for disc cutter design. A multi-degree-of-freedom coupling dynamic model, which contains a cutter ring, a cutter body, two bearings and cutter shaft, is established, considering the external stochastic excitations, bearing nonlinear contact force, multidirectional mutual coupling vibration, etc. Based on the parameters of an actual project and the strong impact external excitations, the modal properties and dynamic responses are analyzed, as well as the cutter shaft and bearings' loads and load transmission law are obtained. Numerical results indicate the maximum radial and axial cutter ring amplitudes of dynamic responses are 0.568 mm and 0.112 mm; the maximum radial and axial vibration velocities are 41.1 mm/s and 38.9 mm/s; the maximum radial and axial vibration accelerations are 94.7 m/s2 and 58.6 m/s2; the maximum swing angle and angular velocity of cutter ring are 0.007° and 0.0074 rad/s, respectively. Finally, the maximum load of bearing roller is 40.3 k N. The proposed research lays a foundation for structure optimization design of disc cutter and cutter base, as well as model selection, modification and fatigue life of the cutter bearing. 展开更多
关键词 tunneling boring machine(TBM) disc cutter system joint interface coupled nonlinearity dynamical characteristics
下载PDF
Effect of Intake Conditions and Nozzle Geometry on Spray Characteristics of Group-Hole Nozzle
17
作者 Jianfeng Pan Jinpeng Hua +1 位作者 Jiaqi Yao Abiodun Oluwaleke Ojo 《Energy Engineering》 EI 2023年第7期1541-1562,共22页
The group-hole nozzle concept is proposed to meet the requirement of nozzle hole minimization and reduce the negative impact of poor spatial spray distributions.However,there are limited researches on the effects of i... The group-hole nozzle concept is proposed to meet the requirement of nozzle hole minimization and reduce the negative impact of poor spatial spray distributions.However,there are limited researches on the effects of intake conditions and nozzle geometry on spray characteristics of the group-hole nozzle.Therefore,in this study,an accurate spray model coupled with the internal cavitating flow was established and computational fluid dynamics(CFD)simulations were done to study the effects of intake conditions and nozzle geometry on spray characteristics of the group-hole nozzle.Experimental data obtained using high-speed digital camera on the high-pressure common rail injection system was used to validate the numerical model.Effects of intake conditions(injection pressure and temperature)and nozzle geometry(orifice entrance curvature radius and nozzle length)on the flow and spray characteristics of the group-hole nozzle were studied numerically.The differences in Sauter mean diameter(SMD),penetration length and fuel evaporation mass between single-hole nozzle and group-hole nozzle under different nozzle geometry were also discussed.It was found that the atomization performance of the group-hole nozzle was better than that of the single-hole nozzle under same intake conditions,and the atomization effect of the short nozzle was better than that of the long nozzle.With increase in the orifice entrance curvature radius,the average velocity and turbulent kinetic energy of the fuel increased,which was conducive to improving the injection rate and flow coefficient of the nozzle.Meanwhile,the penetration length and SMD value rose,while evaporation mass dropped.When the ratio of the orifice entrance curvature radius(R)to the diameter of injection hole(D)was 0.12,the spray characteristics reached a constant state due to elimination of cavitation.Conclusions were made based on these.This study is expected to be a guide for the design of the group-hole nozzle. 展开更多
关键词 DIESEL spray characteristics group-hole nozzle coupling model
下载PDF
Experimental investigation on vibration characteristics of the medium-low-speed maglev vehicle-turnout coupled system 被引量:3
18
作者 Miao Li Dinggang Gao +3 位作者 Tie Li Shihui Luo Weihua Ma Xiaohao Chen 《Railway Engineering Science》 2022年第2期242-261,共20页
The steel turnout is one of the key components in the medium–low-speed maglev line system.However,the vehicle under active control is prone to vehicle–turnout coupled vibration,and thus,it is necessary to identify t... The steel turnout is one of the key components in the medium–low-speed maglev line system.However,the vehicle under active control is prone to vehicle–turnout coupled vibration,and thus,it is necessary to identify the vibration characteristics of this coupled system through field tests.To this end,dynamic performance tests were conducted on a vehicle–turnout coupled system in a medium–low-speed maglev test line.Firstly,the dynamic response data of the coupled system under various operating conditions were obtained.Then,the natural vibration characteristics of the turnout were analysed using the free attenuation method and the finite element method,indicating a good agreement between the simulation results and the measured results;the acceleration response characteristics of the coupled system were analysed in detail,and the ride quality of the vehicle was assessed by Sperling index.Finally,the frequency distribution characteristics of the coupled system were discussed.All these test results could provide references for model validation and optimized design of medium–low-speed maglev transport systems. 展开更多
关键词 Medium–low-speed maglev Vehicle–turnout coupled system Field test Vibration characteristics Ride quality
下载PDF
Simulation Analysis of Electromechanical Coupling for Unmanned Aerial Vehicle Cabin Door System
19
作者 Bangjian Wang Xiaohang Hu Hong Nie 《World Journal of Engineering and Technology》 2023年第4期1012-1018,共7页
In order to study the dynamic response of the unmanned aerial vehicle cabin door opening and closing system under impact load conditions, considering the flexible treatment of mechanical components, and the system’s ... In order to study the dynamic response of the unmanned aerial vehicle cabin door opening and closing system under impact load conditions, considering the flexible treatment of mechanical components, and the system’s motion with different stiffness of energy-absorbing components, a rigid-flexible coupling model of the cabin door actuation system was established in LMS. Virtual. Motion. In Amesim, a control model of the motor was created. Through the Motion-Amesim co-simulation module, the dynamic module of the system was combined with the motor control module to complete the electromechanical coupling simulation and analyze the results. . 展开更多
关键词 Unmanned Aircraft Cabin Door Electromechanical coupling Virtual Prototype Dynamic characteristics
下载PDF
Characteristics of permanent magnet linear synchronous motor fed by spwm inverter based on field-circuit coupled method 被引量:1
20
作者 司纪凯 陈昊 +2 位作者 汪旭东 焦留成 袁世鹰 《Journal of Coal Science & Engineering(China)》 2008年第1期147-151,共5页
Presented field-circuit coupled adaptive time-stepping finite element method to study on permanent magnet linear synchronous motor (PMLSM) characteristics fed by SPWM voltage source inverter.In air-gap field where the... Presented field-circuit coupled adaptive time-stepping finite element method to study on permanent magnet linear synchronous motor (PMLSM) characteristics fed by SPWM voltage source inverter.In air-gap field where the direction or magnitude of the field is changing rapidly,the smallest elements are demanded due to high accuracy to use adaptive meshing technique.The co-simulation was used with the status space functions and time-step finite element functions,in which time-step of the status space functions was the smallest than finite element functions'.The magnitude relation of the normal elec- tromagnetic force and tangential electromagnetic force and the period were attained,and current curve was very abrupt at current zero area due to the bigger resistance and leak- age reactance,including main characteristics of motor voltage and velocity.The simulation results compare triumphantly with the experiments results. 展开更多
关键词 permanent magnet linear synchronous motor sinusoidal pulse width modula-tion (SPWM) voltage source inverter characteristics field-circuit coupled adaptive time-stepping finite element method
下载PDF
上一页 1 2 144 下一页 到第
使用帮助 返回顶部