Aim to countermeasure the presentation attack for iris recognition system,an iris liveness detection scheme based on batch normalized convolutional neural network(BNCNN)is proposed to improve the reliability of the ir...Aim to countermeasure the presentation attack for iris recognition system,an iris liveness detection scheme based on batch normalized convolutional neural network(BNCNN)is proposed to improve the reliability of the iris authentication system.The BNCNN architecture with eighteen layers is constructed to detect the genuine iris and fake iris,including convolutional layer,batch-normalized(BN)layer,Relu layer,pooling layer and full connected layer.The iris image is first preprocessed by iris segmentation and is normalized to 256×256 pixels,and then the iris features are extracted by BNCNN.With these features,the genuine iris and fake iris are determined by the decision-making layer.Batch normalization technique is used in BNCNN to avoid the problem of over fitting and gradient disappearing during training.Extensive experiments are conducted on three classical databases:the CASIA Iris Lamp database,the CASIA Iris Syn database and Ndcontact database.The results show that the proposed method can effectively extract micro texture features of the iris,and achieve higher detection accuracy compared with some typical iris liveness detection methods.展开更多
Many people around the world have lost their lives due to COVID-19.The symptoms of most COVID-19 patients are fever,tiredness and dry cough,and the disease can easily spread to those around them.If the infected people...Many people around the world have lost their lives due to COVID-19.The symptoms of most COVID-19 patients are fever,tiredness and dry cough,and the disease can easily spread to those around them.If the infected people can be detected early,this will help local authorities control the speed of the virus,and the infected can also be treated in time.We proposed a six-layer convolutional neural network combined with max pooling,batch normalization and Adam algorithm to improve the detection effect of COVID-19 patients.In the 10-fold cross-validation methods,our method is superior to several state-of-the-art methods.In addition,we use Grad-CAM technology to realize heat map visualization to observe the process of model training and detection.展开更多
In order to effectively solve the problems of low accuracy,large amount of computation and complex logic of deep learning algorithms in behavior recognition,a kind of behavior recognition based on the fusion of 3 dime...In order to effectively solve the problems of low accuracy,large amount of computation and complex logic of deep learning algorithms in behavior recognition,a kind of behavior recognition based on the fusion of 3 dimensional batch normalization visual geometry group(3D-BN-VGG)and long short-term memory(LSTM)network is designed.In this network,3D convolutional layer is used to extract the spatial domain features and time domain features of video sequence at the same time,multiple small convolution kernels are stacked to replace large convolution kernels,thus the depth of neural network is deepened and the number of network parameters is reduced.In addition,the latest batch normalization algorithm is added to the 3-dimensional convolutional network to improve the training speed.Then the output of the full connection layer is sent to LSTM network as the feature vectors to extract the sequence information.This method,which directly uses the output of the whole base level without passing through the full connection layer,reduces the parameters of the whole fusion network to 15324485,nearly twice as much as those of 3D-BN-VGG.Finally,it reveals that the proposed network achieves 96.5%and 74.9%accuracy in the UCF-101 and HMDB-51 respectively,and the algorithm has a calculation speed of 1066 fps and an acceleration ratio of 1,which has a significant predominance in velocity.展开更多
(Aim)Chinese sign language is an essential tool for hearing-impaired to live,learn and communicate in deaf communities.Moreover,Chinese sign language plays a significant role in speech therapy and rehabilitation.Chine...(Aim)Chinese sign language is an essential tool for hearing-impaired to live,learn and communicate in deaf communities.Moreover,Chinese sign language plays a significant role in speech therapy and rehabilitation.Chinese sign language identification can provide convenience for those hearing impaired people and eliminate the communication barrier between the deaf community and the rest of society.Similar to the research of many biomedical image processing(such as automatic chest radiograph processing,diagnosis of chest radiological images,etc.),with the rapid development of artificial intelligence,especially deep learning technologies and algorithms,sign language image recognition ushered in the spring.This study aims to propose a novel sign language image recognition method based on an optimized convolutional neural network.(Method)Three different combinations of blocks:Conv-BN-ReLU-Pooling,Conv-BN-ReLU,Conv-BN-ReLU-BN were employed,including some advanced technologies such as batch normalization,dropout,and Leaky ReLU.We proposed an optimized convolutional neural network to identify 1320 sign language images,which was called as CNN-CB method.Totally ten runs were implemented with the hold-out randomly set for each run.(Results)The results indicate that our CNN-CB method gained an overall accuracy of 94.88±0.99%.(Conclusion)Our CNN-CB method is superior to thirteen state-of-the-art methods:eight traditional machine learning approaches and five modern convolutional neural network approaches.展开更多
Because behavior recognition is based on video frame sequences,this paper proposes a behavior recognition algorithm that combines 3D residual convolutional neural network(R3D)and long short-term memory(LSTM).First,the...Because behavior recognition is based on video frame sequences,this paper proposes a behavior recognition algorithm that combines 3D residual convolutional neural network(R3D)and long short-term memory(LSTM).First,the residual module is extended to three dimensions,which can extract features in the time and space domain at the same time.Second,by changing the size of the pooling layer window the integrity of the time domain features is preserved,at the same time,in order to overcome the difficulty of network training and over-fitting problems,the batch normalization(BN)layer and the dropout layer are added.After that,because the global average pooling layer(GAP)is affected by the size of the feature map,the network cannot be further deepened,so the convolution layer and maxpool layer are added to the R3D network.Finally,because LSTM has the ability to memorize information and can extract more abstract timing features,the LSTM network is introduced into the R3D network.Experimental results show that the R3D+LSTM network achieves 91%recognition rate on the UCF-101 dataset.展开更多
The prevalence of melanoma skin cancer has increased in recent decades.The greatest risk from melanoma is its ability to broadly spread throughout the body by means of lymphatic vessels and veins.Thus,the early diagno...The prevalence of melanoma skin cancer has increased in recent decades.The greatest risk from melanoma is its ability to broadly spread throughout the body by means of lymphatic vessels and veins.Thus,the early diagnosis of melanoma is a key factor in improving the prognosis of the disease.Deep learning makes it possible to design and develop intelligent systems that can be used in detecting and classifying skin lesions from visible-light images.Such systems can provide early and accurate diagnoses of melanoma and other types of skin diseases.This paper proposes a new method which can be used for both skin lesion segmentation and classification problems.This solution makes use of Convolutional neural networks(CNN)with the architecture two-dimensional(Conv2D)using three phases:feature extraction,classification and detection.The proposed method is mainly designed for skin cancer detection and diagnosis.Using the public dataset International Skin Imaging Collaboration(ISIC),the impact of the proposed segmentation method on the performance of the classification accuracy was investigated.The obtained results showed that the proposed skin cancer detection and classification method had a good performance with an accuracy of 94%,sensitivity of 92%and specificity of 96%.Also comparing with the related work using the same dataset,i.e.,ISIC,showed a better performance of the proposed method.展开更多
Aiming at the problem of unsatisfactory effects of traditional micro-expression recognition algorithms,an efficient micro-expression recognition algorithm is proposed,which uses convolutional neural networks(CNN)to ex...Aiming at the problem of unsatisfactory effects of traditional micro-expression recognition algorithms,an efficient micro-expression recognition algorithm is proposed,which uses convolutional neural networks(CNN)to extract spatial features of micro-expressions,and long short-term memory network(LSTM)to extract time domain features.CNN and LSTM are combined as the basis of micro-expression recognition.In many CNN structures,the visual geometry group(VGG)using a small convolution kernel is finally selected as the pre-network through comparison.Due to the difficulty of deep learning training and over-fitting,the dropout method and batch normalization method are used to solve the problem in the VGG network.Two data sets CASME and CASME II are used for test comparison,in order to solve the problem of insufficient data sets,randomly determine the starting frame,and a fixedlength frame sequence is used as the standard,and repeatedly read all sample frames of the entire data set to achieve trayersal and data amplification.Finallv.a hieh recognition rate of 67.48% is achieved.展开更多
The micro-expression lasts for a very short time and the intensity is very subtle.Aiming at the problem of its low recognition rate,this paper proposes a new micro-expression recognition algorithm based on a three-dim...The micro-expression lasts for a very short time and the intensity is very subtle.Aiming at the problem of its low recognition rate,this paper proposes a new micro-expression recognition algorithm based on a three-dimensional convolutional neural network(3D-CNN),which can extract two-di-mensional features in spatial domain and one-dimensional features in time domain,simultaneously.The network structure design is based on the deep learning framework Keras,and the discarding method and batch normalization(BN)algorithm are effectively combined with three-dimensional vis-ual geometry group block(3D-VGG-Block)to reduce the risk of overfitting while improving training speed.Aiming at the problem of the lack of samples in the data set,two methods of image flipping and small amplitude flipping are used for data amplification.Finally,the recognition rate on the data set is as high as 69.11%.Compared with the current international average micro-expression recog-nition rate of about 67%,the proposed algorithm has obvious advantages in recognition rate.展开更多
Nowadays,commercial transactions and customer reviews are part of human life and various business applications.The technologies create a great impact on online user reviews and activities,affecting the business proces...Nowadays,commercial transactions and customer reviews are part of human life and various business applications.The technologies create a great impact on online user reviews and activities,affecting the business process.Customer reviews and ratings are more helpful to the new customer to purchase the product,but the fake reviews completely affect the business.The traditional systems consume maximum time and create complexity while analyzing a large volume of customer information.Therefore,in this work optimized recommendation system is developed for analyzing customer reviews with minimum complexity.Here,Amazon Product Kaggle dataset information is utilized for investigating the customer review.The collected information is analyzed and processed by batch normalized capsule networks(NCN).The network explores the user reviews according to product details,time,price purchasing factors,etc.,ensuring product quality and ratings.Then effective recommendation system is developed using a butterfly optimized matrix factorizationfiltering approach.Then the system’s efficiency is evaluated using the Rand Index,Dunn index,accuracy,and error rate.展开更多
Bearing pitting,one of the common faults in mechanical systems,is a research hotspot in both academia and industry.Traditional fault diagnosis methods for bearings are based on manual experience with low diagnostic ef...Bearing pitting,one of the common faults in mechanical systems,is a research hotspot in both academia and industry.Traditional fault diagnosis methods for bearings are based on manual experience with low diagnostic efficiency.This study proposes a novel bearing fault diagnosis method based on deep separable convolution and spatial dropout regularization.Deep separable convolution extracts features from the raw bearing vibration signals,during which a 3×1 convolutional kernel with a one-step size selects effective features by adjusting its weights.The similarity pruning process of the channel convolution and point convolution can reduce the number of parameters and calculation quantities by evaluating the size of the weights and removing the feature maps of smaller weights.The spatial dropout regularization method focuses on bearing signal fault features,improving the independence between the bearing signal features and enhancing the robustness of the model.A batch normalization algorithm is added to the convolutional layer for gradient explosion control and network stability improvement.To validate the effectiveness of the proposed method,we collect raw vibration signals from bearings in eight different health states.The experimental results show that the proposed method can effectively distinguish different pitting faults in the bearings with a better accuracy than that of other typical deep learning methods.展开更多
Channel pruning can reduce memory consumption and running time with least performance damage,and is one of the most important techniques in network compression.However,existing channel pruning methods mainly focus on ...Channel pruning can reduce memory consumption and running time with least performance damage,and is one of the most important techniques in network compression.However,existing channel pruning methods mainly focus on the pruning of standard convolutional networks,and they rely intensively on time-consuming fine-tuning to achieve the performance improvement.To this end,we present a novel efficient probability-based channel pruning method for depthwise separable convolutional networks.Our method leverages a new simple yet effective probability-based channel pruning criterion by taking the scaling and shifting factors of batch normalization layers into consideration.A novel shifting factor fusion technique is further developed to improve the performance of the pruned networks without requiring extra time-consuming fine-tuning.We apply the proposed method to five representative deep learning networks,namely MobileNetV1,MobileNetV2,ShuffleNetV1,ShuffleNetV2,and GhostNet,to demonstrate the efficiency of our pruning method.Extensive experimental results and comparisons on publicly available CIFAR10,CIFAR100,and ImageNet datasets validate the feasibility of the proposed method.展开更多
In this paper, we propose a lightweight network with an adaptive batch normalization module, called Meta-BN Net, for few-shot classification. Unlike existing few-shot learning methods, which consist of complex models ...In this paper, we propose a lightweight network with an adaptive batch normalization module, called Meta-BN Net, for few-shot classification. Unlike existing few-shot learning methods, which consist of complex models or algorithms, our approach extends batch normalization, an essential part of current deep neural network training, whose potential has not been fully explored. In particular, a meta-module is introduced to learn to generate more powerful affine transformation parameters, known as and , in the batch normalization layer adaptively so that the representation ability of batch normalization can be activated. The experimental results on miniImageNet demonstrate that Meta-BN Net not only outperforms the baseline methods at a large margin but also is competitive with recent state-of-the-art few-shot learning methods. We also conduct experiments on Fewshot-CIFAR100 and CUB datasets, and the results show that our approach is effective to boost the performance of weak baseline networks. We believe our findings can motivate to explore the undiscovered capacity of base components in a neural network as well as more efficient few-shot learning methods.展开更多
A novel method is developed for the direct determination of naphazoline hydrochloride(NAP) and pyridoxine hydrochloride(VB6) in commercial eye drops. By using excitation–emission matrix(EEM)fluorescence coupled...A novel method is developed for the direct determination of naphazoline hydrochloride(NAP) and pyridoxine hydrochloride(VB6) in commercial eye drops. By using excitation–emission matrix(EEM)fluorescence coupled with second-order calibration method based on the alternating trilinear decomposition(ATLD) algorithm, the proposed approach can achieve quantitative analysis successfully even in the presence of unknown and uncalibrated interferences. The method shows good linearity for NAP and VB6 with correlation coefficients greater than 0.99. The results were in good agreement with the labeled contents. To further confirm the feasibility and reliability of the proposed method, the same batch samples were analyzed by multiple reaction monitoring(MRM) based on LC–MS/MS method.T-test demonstrated that there are no significant differences between the prediction results of the two methods. The satisfactory results obtained in this work indicate that the use of the second-order calibration method coupled with the EEM is a promising tool for industrial quality control and pharmaceutical analysis due to its advantages of high sensitivity, low-cost and simple implementation.展开更多
Conventional acoustic-to-articulatory inversion methods usually train mappings by using maximum likelihood or least square criterion,which assume that all the articulatory channels are equally important.However,differ...Conventional acoustic-to-articulatory inversion methods usually train mappings by using maximum likelihood or least square criterion,which assume that all the articulatory channels are equally important.However,different articulatory channels play different roles in speech production.In this paper,to account for this in acoustic-to-articulatory inversion,the importance of each articulatory channel is modeled as an exponential function of its corresponding velocity profile,and incorporated into the conventional least square loss function.The proposed loss function is applied to optimize a batch normalized Deep Neural Network(DNN)for acoustic-to-articulatory inversion.The result indicates that the DNN trained with the proposed cost function outperforms the DNN trained with traditional cost function for most articulatory channels.展开更多
基金This work was supported in part by project supported by National Natural Science Foundation of China(Grant No.61572182,No.61370225)project supported by Hunan Provincial Natural Science Foundation of China(Grant No.15JJ2007).
文摘Aim to countermeasure the presentation attack for iris recognition system,an iris liveness detection scheme based on batch normalized convolutional neural network(BNCNN)is proposed to improve the reliability of the iris authentication system.The BNCNN architecture with eighteen layers is constructed to detect the genuine iris and fake iris,including convolutional layer,batch-normalized(BN)layer,Relu layer,pooling layer and full connected layer.The iris image is first preprocessed by iris segmentation and is normalized to 256×256 pixels,and then the iris features are extracted by BNCNN.With these features,the genuine iris and fake iris are determined by the decision-making layer.Batch normalization technique is used in BNCNN to avoid the problem of over fitting and gradient disappearing during training.Extensive experiments are conducted on three classical databases:the CASIA Iris Lamp database,the CASIA Iris Syn database and Ndcontact database.The results show that the proposed method can effectively extract micro texture features of the iris,and achieve higher detection accuracy compared with some typical iris liveness detection methods.
文摘Many people around the world have lost their lives due to COVID-19.The symptoms of most COVID-19 patients are fever,tiredness and dry cough,and the disease can easily spread to those around them.If the infected people can be detected early,this will help local authorities control the speed of the virus,and the infected can also be treated in time.We proposed a six-layer convolutional neural network combined with max pooling,batch normalization and Adam algorithm to improve the detection effect of COVID-19 patients.In the 10-fold cross-validation methods,our method is superior to several state-of-the-art methods.In addition,we use Grad-CAM technology to realize heat map visualization to observe the process of model training and detection.
基金the National Natural Science Foundation of China(No.61772417,61634004,61602377)Key R&D Program Projects in Shaanxi Province(No.2017GY-060)Shaanxi Natural Science Basic Research Project(No.2018JM4018).
文摘In order to effectively solve the problems of low accuracy,large amount of computation and complex logic of deep learning algorithms in behavior recognition,a kind of behavior recognition based on the fusion of 3 dimensional batch normalization visual geometry group(3D-BN-VGG)and long short-term memory(LSTM)network is designed.In this network,3D convolutional layer is used to extract the spatial domain features and time domain features of video sequence at the same time,multiple small convolution kernels are stacked to replace large convolution kernels,thus the depth of neural network is deepened and the number of network parameters is reduced.In addition,the latest batch normalization algorithm is added to the 3-dimensional convolutional network to improve the training speed.Then the output of the full connection layer is sent to LSTM network as the feature vectors to extract the sequence information.This method,which directly uses the output of the whole base level without passing through the full connection layer,reduces the parameters of the whole fusion network to 15324485,nearly twice as much as those of 3D-BN-VGG.Finally,it reveals that the proposed network achieves 96.5%and 74.9%accuracy in the UCF-101 and HMDB-51 respectively,and the algorithm has a calculation speed of 1066 fps and an acceleration ratio of 1,which has a significant predominance in velocity.
基金supported from The National Philosophy and Social Sciences Foundation(Grant No.20BTQ065).
文摘(Aim)Chinese sign language is an essential tool for hearing-impaired to live,learn and communicate in deaf communities.Moreover,Chinese sign language plays a significant role in speech therapy and rehabilitation.Chinese sign language identification can provide convenience for those hearing impaired people and eliminate the communication barrier between the deaf community and the rest of society.Similar to the research of many biomedical image processing(such as automatic chest radiograph processing,diagnosis of chest radiological images,etc.),with the rapid development of artificial intelligence,especially deep learning technologies and algorithms,sign language image recognition ushered in the spring.This study aims to propose a novel sign language image recognition method based on an optimized convolutional neural network.(Method)Three different combinations of blocks:Conv-BN-ReLU-Pooling,Conv-BN-ReLU,Conv-BN-ReLU-BN were employed,including some advanced technologies such as batch normalization,dropout,and Leaky ReLU.We proposed an optimized convolutional neural network to identify 1320 sign language images,which was called as CNN-CB method.Totally ten runs were implemented with the hold-out randomly set for each run.(Results)The results indicate that our CNN-CB method gained an overall accuracy of 94.88±0.99%.(Conclusion)Our CNN-CB method is superior to thirteen state-of-the-art methods:eight traditional machine learning approaches and five modern convolutional neural network approaches.
基金Supported by the Shaanxi Province Key Research and Development Project (No. 2021GY-280)Shaanxi Province Natural Science Basic Research Program (No. 2021JM-459)the National Natural Science Foundation of China (No. 61772417)
文摘Because behavior recognition is based on video frame sequences,this paper proposes a behavior recognition algorithm that combines 3D residual convolutional neural network(R3D)and long short-term memory(LSTM).First,the residual module is extended to three dimensions,which can extract features in the time and space domain at the same time.Second,by changing the size of the pooling layer window the integrity of the time domain features is preserved,at the same time,in order to overcome the difficulty of network training and over-fitting problems,the batch normalization(BN)layer and the dropout layer are added.After that,because the global average pooling layer(GAP)is affected by the size of the feature map,the network cannot be further deepened,so the convolution layer and maxpool layer are added to the R3D network.Finally,because LSTM has the ability to memorize information and can extract more abstract timing features,the LSTM network is introduced into the R3D network.Experimental results show that the R3D+LSTM network achieves 91%recognition rate on the UCF-101 dataset.
基金The authors would like to thank the deanship of scientific research and Re-search Center for engineering and applied sciences,Majmaah University,Saudi Arabia,for their support and encouragementthe authors would like also to express deep thanks to our College(College of Science at Zulfi City,Majmaah University,AL-Majmaah 11952,Saudi Arabia)Project No.31-1439.
文摘The prevalence of melanoma skin cancer has increased in recent decades.The greatest risk from melanoma is its ability to broadly spread throughout the body by means of lymphatic vessels and veins.Thus,the early diagnosis of melanoma is a key factor in improving the prognosis of the disease.Deep learning makes it possible to design and develop intelligent systems that can be used in detecting and classifying skin lesions from visible-light images.Such systems can provide early and accurate diagnoses of melanoma and other types of skin diseases.This paper proposes a new method which can be used for both skin lesion segmentation and classification problems.This solution makes use of Convolutional neural networks(CNN)with the architecture two-dimensional(Conv2D)using three phases:feature extraction,classification and detection.The proposed method is mainly designed for skin cancer detection and diagnosis.Using the public dataset International Skin Imaging Collaboration(ISIC),the impact of the proposed segmentation method on the performance of the classification accuracy was investigated.The obtained results showed that the proposed skin cancer detection and classification method had a good performance with an accuracy of 94%,sensitivity of 92%and specificity of 96%.Also comparing with the related work using the same dataset,i.e.,ISIC,showed a better performance of the proposed method.
基金Shaanxi Province Key Research and Development Project(No.2021 GY-280)Shaanxi Province Natural Science Basic Research Program Project(No.2021JM-459)+1 种基金National Natural Science Foundation of China(No.61834005,61772417,61802304,61602377,61634004)Shaanxi Province International Science and Technology Cooperation Project(No.2018KW-006)。
文摘Aiming at the problem of unsatisfactory effects of traditional micro-expression recognition algorithms,an efficient micro-expression recognition algorithm is proposed,which uses convolutional neural networks(CNN)to extract spatial features of micro-expressions,and long short-term memory network(LSTM)to extract time domain features.CNN and LSTM are combined as the basis of micro-expression recognition.In many CNN structures,the visual geometry group(VGG)using a small convolution kernel is finally selected as the pre-network through comparison.Due to the difficulty of deep learning training and over-fitting,the dropout method and batch normalization method are used to solve the problem in the VGG network.Two data sets CASME and CASME II are used for test comparison,in order to solve the problem of insufficient data sets,randomly determine the starting frame,and a fixedlength frame sequence is used as the standard,and repeatedly read all sample frames of the entire data set to achieve trayersal and data amplification.Finallv.a hieh recognition rate of 67.48% is achieved.
基金Supported by the Shaanxi Province Key Research and Development Project(No.2021GY-280)Shaanxi Province Natural Science Basic Re-search Program Project(No.2021JM-459)+1 种基金the National Natural Science Foundation of China(No.61834005,61772417,61802304,61602377,61634004)the Shaanxi Province International Science and Technology Cooperation Project(No.2018KW-006).
文摘The micro-expression lasts for a very short time and the intensity is very subtle.Aiming at the problem of its low recognition rate,this paper proposes a new micro-expression recognition algorithm based on a three-dimensional convolutional neural network(3D-CNN),which can extract two-di-mensional features in spatial domain and one-dimensional features in time domain,simultaneously.The network structure design is based on the deep learning framework Keras,and the discarding method and batch normalization(BN)algorithm are effectively combined with three-dimensional vis-ual geometry group block(3D-VGG-Block)to reduce the risk of overfitting while improving training speed.Aiming at the problem of the lack of samples in the data set,two methods of image flipping and small amplitude flipping are used for data amplification.Finally,the recognition rate on the data set is as high as 69.11%.Compared with the current international average micro-expression recog-nition rate of about 67%,the proposed algorithm has obvious advantages in recognition rate.
文摘Nowadays,commercial transactions and customer reviews are part of human life and various business applications.The technologies create a great impact on online user reviews and activities,affecting the business process.Customer reviews and ratings are more helpful to the new customer to purchase the product,but the fake reviews completely affect the business.The traditional systems consume maximum time and create complexity while analyzing a large volume of customer information.Therefore,in this work optimized recommendation system is developed for analyzing customer reviews with minimum complexity.Here,Amazon Product Kaggle dataset information is utilized for investigating the customer review.The collected information is analyzed and processed by batch normalized capsule networks(NCN).The network explores the user reviews according to product details,time,price purchasing factors,etc.,ensuring product quality and ratings.Then effective recommendation system is developed using a butterfly optimized matrix factorizationfiltering approach.Then the system’s efficiency is evaluated using the Rand Index,Dunn index,accuracy,and error rate.
基金the National Key Research and Development Program of China (No. 2019YFB1704500)the State Ministry of Science and Technology Innovation Fund of China (No. 2018IM030200)+1 种基金the National Natural Foundation of China (No. U1708255)the China Scholarship Council (No. 201906080059)
文摘Bearing pitting,one of the common faults in mechanical systems,is a research hotspot in both academia and industry.Traditional fault diagnosis methods for bearings are based on manual experience with low diagnostic efficiency.This study proposes a novel bearing fault diagnosis method based on deep separable convolution and spatial dropout regularization.Deep separable convolution extracts features from the raw bearing vibration signals,during which a 3×1 convolutional kernel with a one-step size selects effective features by adjusting its weights.The similarity pruning process of the channel convolution and point convolution can reduce the number of parameters and calculation quantities by evaluating the size of the weights and removing the feature maps of smaller weights.The spatial dropout regularization method focuses on bearing signal fault features,improving the independence between the bearing signal features and enhancing the robustness of the model.A batch normalization algorithm is added to the convolutional layer for gradient explosion control and network stability improvement.To validate the effectiveness of the proposed method,we collect raw vibration signals from bearings in eight different health states.The experimental results show that the proposed method can effectively distinguish different pitting faults in the bearings with a better accuracy than that of other typical deep learning methods.
基金the National Natural Science Foundation of China under Grant Nos.62036010 and 62072340the Zhejiang Provincial Natural Science Foundation of China under Grant Nos.LZ21F020001 and LSZ19F020001the Open Project Program of the State Key Laboratory of CAD&CG,Zhejiang University under Grant No.A2220.
文摘Channel pruning can reduce memory consumption and running time with least performance damage,and is one of the most important techniques in network compression.However,existing channel pruning methods mainly focus on the pruning of standard convolutional networks,and they rely intensively on time-consuming fine-tuning to achieve the performance improvement.To this end,we present a novel efficient probability-based channel pruning method for depthwise separable convolutional networks.Our method leverages a new simple yet effective probability-based channel pruning criterion by taking the scaling and shifting factors of batch normalization layers into consideration.A novel shifting factor fusion technique is further developed to improve the performance of the pruned networks without requiring extra time-consuming fine-tuning.We apply the proposed method to five representative deep learning networks,namely MobileNetV1,MobileNetV2,ShuffleNetV1,ShuffleNetV2,and GhostNet,to demonstrate the efficiency of our pruning method.Extensive experimental results and comparisons on publicly available CIFAR10,CIFAR100,and ImageNet datasets validate the feasibility of the proposed method.
基金supported by the National Natural Science Foundation of China(Grant Nos.61673396,U19A2073,61976245).
文摘In this paper, we propose a lightweight network with an adaptive batch normalization module, called Meta-BN Net, for few-shot classification. Unlike existing few-shot learning methods, which consist of complex models or algorithms, our approach extends batch normalization, an essential part of current deep neural network training, whose potential has not been fully explored. In particular, a meta-module is introduced to learn to generate more powerful affine transformation parameters, known as and , in the batch normalization layer adaptively so that the representation ability of batch normalization can be activated. The experimental results on miniImageNet demonstrate that Meta-BN Net not only outperforms the baseline methods at a large margin but also is competitive with recent state-of-the-art few-shot learning methods. We also conduct experiments on Fewshot-CIFAR100 and CUB datasets, and the results show that our approach is effective to boost the performance of weak baseline networks. We believe our findings can motivate to explore the undiscovered capacity of base components in a neural network as well as more efficient few-shot learning methods.
基金the financial supports from the National Natural Science Foundation of China(No.21175041)the National Basic Research Program of China(No.2012CB910602)the Foundation for Innovative Research Groups of NSFC(No.21221003)
文摘A novel method is developed for the direct determination of naphazoline hydrochloride(NAP) and pyridoxine hydrochloride(VB6) in commercial eye drops. By using excitation–emission matrix(EEM)fluorescence coupled with second-order calibration method based on the alternating trilinear decomposition(ATLD) algorithm, the proposed approach can achieve quantitative analysis successfully even in the presence of unknown and uncalibrated interferences. The method shows good linearity for NAP and VB6 with correlation coefficients greater than 0.99. The results were in good agreement with the labeled contents. To further confirm the feasibility and reliability of the proposed method, the same batch samples were analyzed by multiple reaction monitoring(MRM) based on LC–MS/MS method.T-test demonstrated that there are no significant differences between the prediction results of the two methods. The satisfactory results obtained in this work indicate that the use of the second-order calibration method coupled with the EEM is a promising tool for industrial quality control and pharmaceutical analysis due to its advantages of high sensitivity, low-cost and simple implementation.
基金supported by the National Natural Science-Foundation of China(No.61977049)Advanced Innovation Center for Language Resource and Intelligence(KYR17005)+1 种基金National Major Social Sciences Foundation of China(15ZDB103)Innovation Program of Chinese Academy of Social Science
文摘Conventional acoustic-to-articulatory inversion methods usually train mappings by using maximum likelihood or least square criterion,which assume that all the articulatory channels are equally important.However,different articulatory channels play different roles in speech production.In this paper,to account for this in acoustic-to-articulatory inversion,the importance of each articulatory channel is modeled as an exponential function of its corresponding velocity profile,and incorporated into the conventional least square loss function.The proposed loss function is applied to optimize a batch normalized Deep Neural Network(DNN)for acoustic-to-articulatory inversion.The result indicates that the DNN trained with the proposed cost function outperforms the DNN trained with traditional cost function for most articulatory channels.