The casting production process typically involves single jobs and small batches,with multiple constraints in the molding and smelting operations.To address the discrete optimization challenge of casting production sch...The casting production process typically involves single jobs and small batches,with multiple constraints in the molding and smelting operations.To address the discrete optimization challenge of casting production scheduling,this paper presents a multi-objective batch scheduling model for molding and smelting operations on unrelated batch processing machines with incompatible job families and non-identical job sizes.The model aims to minimise the makespan,number of batches,and average vacancy rate of sandboxes.Based on the genetic algorithm,virus optimization algorithm,and two local search strategies,a hybrid algorithm(GA-VOA-BMS)has been designed to solve the model.The GA-VOA-BMS applies a novel Batch First Fit(BFF)heuristic for incompatible job families to improve the quality of the initial population,adopting the batch moving strategy and batch merging strategy to further enhance the quality of the solution and accelerate the convergence of the algorithm.The proposed algorithm was then compared with multi-objective swarm optimization algorithms,namely NSGA-ll,SPEA-l,and PESA-ll,to evaluate its effectiveness.The results of the performance comparison indicate that the proposed algorithm outperforms the others in terms of both qualityand stability.展开更多
This study focuses on the scheduling problem of unrelated parallel batch processing machines(BPM)with release times,a scenario derived from the moulding process in a foundry.In this process,a batch is initially formed...This study focuses on the scheduling problem of unrelated parallel batch processing machines(BPM)with release times,a scenario derived from the moulding process in a foundry.In this process,a batch is initially formed,placed in a sandbox,and then the sandbox is positioned on a BPM formoulding.The complexity of the scheduling problem increases due to the consideration of BPM capacity and sandbox volume.To minimize the makespan,a new cooperated imperialist competitive algorithm(CICA)is introduced.In CICA,the number of empires is not a parameter,and four empires aremaintained throughout the search process.Two types of assimilations are achieved:The strongest and weakest empires cooperate in their assimilation,while the remaining two empires,having a close normalization total cost,combine in their assimilation.A new form of imperialist competition is proposed to prevent insufficient competition,and the unique features of the problem are effectively utilized.Computational experiments are conducted across several instances,and a significant amount of experimental results show that the newstrategies of CICAare effective,indicating promising advantages for the considered BPMscheduling problems.展开更多
Planning and scheduling is one of the most important activity in supply chain operation management.Over the years,there have been multiple researches regarding planning and scheduling which are applied to improve a va...Planning and scheduling is one of the most important activity in supply chain operation management.Over the years,there have been multiple researches regarding planning and scheduling which are applied to improve a variety of supply chains.This includes two commonly used methods which are mathematical programming models and heuristics algorithms.Flowshop manufacturing systems are seen normally in industrial environments but few have considered certain constraints such as transportation capacity and transportation time within their supply chain.A two-stage flowshop of a single processing machine and a batch processing machine are considered with their capacity and transportation time between twomachines.The objectives of this research are to build a suitable mathematical model capable of minimizing the maximum completion time,to propose a heuristic optimization algorithm to solve the problem,and to develop an applicable program of the heuristics algorithm.AMixed Integer Programming(MIP)model and a heuristics optimization algorithmwas developed and tested using a randomly generated data set for feasibility.The overall results and performance of each approach was compared between the two methods that would assist the decision maker in choosing a suitable solution for their manufacturing line.展开更多
文摘The casting production process typically involves single jobs and small batches,with multiple constraints in the molding and smelting operations.To address the discrete optimization challenge of casting production scheduling,this paper presents a multi-objective batch scheduling model for molding and smelting operations on unrelated batch processing machines with incompatible job families and non-identical job sizes.The model aims to minimise the makespan,number of batches,and average vacancy rate of sandboxes.Based on the genetic algorithm,virus optimization algorithm,and two local search strategies,a hybrid algorithm(GA-VOA-BMS)has been designed to solve the model.The GA-VOA-BMS applies a novel Batch First Fit(BFF)heuristic for incompatible job families to improve the quality of the initial population,adopting the batch moving strategy and batch merging strategy to further enhance the quality of the solution and accelerate the convergence of the algorithm.The proposed algorithm was then compared with multi-objective swarm optimization algorithms,namely NSGA-ll,SPEA-l,and PESA-ll,to evaluate its effectiveness.The results of the performance comparison indicate that the proposed algorithm outperforms the others in terms of both qualityand stability.
基金the National Natural Science Foundation of China(Grant Number 61573264).
文摘This study focuses on the scheduling problem of unrelated parallel batch processing machines(BPM)with release times,a scenario derived from the moulding process in a foundry.In this process,a batch is initially formed,placed in a sandbox,and then the sandbox is positioned on a BPM formoulding.The complexity of the scheduling problem increases due to the consideration of BPM capacity and sandbox volume.To minimize the makespan,a new cooperated imperialist competitive algorithm(CICA)is introduced.In CICA,the number of empires is not a parameter,and four empires aremaintained throughout the search process.Two types of assimilations are achieved:The strongest and weakest empires cooperate in their assimilation,while the remaining two empires,having a close normalization total cost,combine in their assimilation.A new form of imperialist competition is proposed to prevent insufficient competition,and the unique features of the problem are effectively utilized.Computational experiments are conducted across several instances,and a significant amount of experimental results show that the newstrategies of CICAare effective,indicating promising advantages for the considered BPMscheduling problems.
文摘Planning and scheduling is one of the most important activity in supply chain operation management.Over the years,there have been multiple researches regarding planning and scheduling which are applied to improve a variety of supply chains.This includes two commonly used methods which are mathematical programming models and heuristics algorithms.Flowshop manufacturing systems are seen normally in industrial environments but few have considered certain constraints such as transportation capacity and transportation time within their supply chain.A two-stage flowshop of a single processing machine and a batch processing machine are considered with their capacity and transportation time between twomachines.The objectives of this research are to build a suitable mathematical model capable of minimizing the maximum completion time,to propose a heuristic optimization algorithm to solve the problem,and to develop an applicable program of the heuristics algorithm.AMixed Integer Programming(MIP)model and a heuristics optimization algorithmwas developed and tested using a randomly generated data set for feasibility.The overall results and performance of each approach was compared between the two methods that would assist the decision maker in choosing a suitable solution for their manufacturing line.