期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Discharge behavior and electrochemical properties of Mg-Al-Sn alloy anode for seawater activated battery 被引量:2
1
作者 余琨 熊汉青 +5 位作者 文利 戴翌龙 杨士海 范素峰 滕飞 乔雪岩 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第4期1234-1240,共7页
Mg-Al-Sn alloy is one of the new developed anode materials for seawater activated batteries. The potentiodynamic polarization, galvanostatic discharge and electrochemical impedance spectroscopy of Mg-6%Al-1%Sn and Mg-... Mg-Al-Sn alloy is one of the new developed anode materials for seawater activated batteries. The potentiodynamic polarization, galvanostatic discharge and electrochemical impedance spectroscopy of Mg-6%Al-1%Sn and Mg-6%Al-5%Sn(mass fraction) alloys in seawater were studied and compared with the commercial AZ31 and AP65 alloys. The results show that the Mg-6%Al-1%Sn alloy obtains the most negative discharge potential of average-1.611V with a electric current density of 100 mA/cm2. EIS studies reveal that the Mg-Al-Sn alloy/seawater interfacial electrochemical process is determined by an activation controlled reaction. The assembled prototype batteries with Mg-6%Al-1%Sn alloy as anodes and Ag Cl as cathodes exhibit a satisfactory integrated discharge properties. 展开更多
关键词 magnesium anode material galvanostatic discharge anodic dissolution seawater activated batteries
下载PDF
Electrochemical properties of magnesium alloy anodes discharged in seawater 被引量:5
2
作者 余琨 黄俏 +1 位作者 赵俊 戴翌龙 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第9期2184-2190,共7页
Magnesium alloys can be developed as anode materials for seawater activated batteries. The electrochemical properties of AZ31, AP65 and Mg-3%Ga-2%Hg alloy anodes discharged in seawater were studied. The potentiodynami... Magnesium alloys can be developed as anode materials for seawater activated batteries. The electrochemical properties of AZ31, AP65 and Mg-3%Ga-2%Hg alloy anodes discharged in seawater were studied. The potentiodynamic polarization shows that the Mg-3%Ga-2%Hg alloy provides more negative corrosion potentials than AZ31 or AP65 alloy. The galvanostatic discharge results show that the Mg-3%Ga-2%Hg alloy exhibits good electrochemical properties as anodes in seawater. And the EIS studies reveal that the magnesium alloy anode/seawater interfacial process is determined by an activation controlled reaction. The Mg3Hg and Mg21Ga5Hg3 phases in Mg-3%Ga-2%Hg alloy improve its electrochemical properties better than the Mg17(Al,Zn)12 phase in AZ31 and Mg(Pb) solid solution phase in AP65 alloys. 展开更多
关键词 magnesium alloy Mg-Ga-Hg alloy electrochemical properties seawater activated battery ANODE
下载PDF
Influence of Al-Mn master alloys on microstructures and electrochemical properties of Mg-Al-Pb-Mn alloys 被引量:2
3
作者 陈彬 王日初 +2 位作者 彭超群 冯艳 王乃光 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第2期423-430,共8页
Mg-Al-Pb alloy is one of the newly developed materials for the seawater activated batteries. As-cast Mg-6Al-5Pb and Mg-6Al-5Pb-0.5Mn alloys with different additions of Al-15%Mn (mass fraction), Al-30%Mn and Al-50%Mn... Mg-Al-Pb alloy is one of the newly developed materials for the seawater activated batteries. As-cast Mg-6Al-5Pb and Mg-6Al-5Pb-0.5Mn alloys with different additions of Al-15%Mn (mass fraction), Al-30%Mn and Al-50%Mn master alloys were prepared by melting and casting. Their microstructures were observed by optical microscopy and scanning electron microscopy. The electrochemical properties, hydrogen evolution and mass loss of Mg-6Al-5Pb-0.5Mn alloys were studied. The results show that Mg-6Al-5Pb-0.5Mn alloy added with Al-50%Mn master alloy provides more negative corrosion average potential (-1.66 V), smaller corrosion current density (7 μm/cm2) and lower free corrosion rate (0.51 mg·cm-2·h-1) than other alloys. This is probably attributed to the presence of Al11Mn4 phase, which facilitates the self-peeling of corrosion products and enlarges the electrochemical reaction area as well as enhances the electrochemical activity. 展开更多
关键词 AL-MN Mg-Al-Pb-Mn AL-MN master alloy Mg-Al-Pb-Mn hydrogen evolution corrosion seawater activated batteries
下载PDF
Effective exposure of nitrogen heteroatoms in 3D porous graphene framework for oxygen reduction reaction and lithium–sulfur batteries 被引量:12
4
作者 Jia-Le Shi Cheng Tang +2 位作者 Jia-Qi Huang Wancheng Zhu Qiang Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第1期167-175,共9页
The introduction of nitrogen heteroatoms into carbon materials is a facile and efficient strategy to regulate their reactivities and facilitate their potential applications in energy conversion and storage. However,mo... The introduction of nitrogen heteroatoms into carbon materials is a facile and efficient strategy to regulate their reactivities and facilitate their potential applications in energy conversion and storage. However,most of nitrogen heteroatoms are doped into the bulk phase of carbon without site selectivity, which significantly reduces the contacts of feedstocks with the active dopants in a conductive scaffold. Herein we proposed the chemical vapor deposition of a nitrogen-doped graphene skin on the 3D porous graphene framework and donated the carbon/carbon composite as surface N-doped grapheme(SNG). In contrast with routine N-doped graphene framework(NGF) with bulk distribution of N heteroatoms, the SNG renders a high surface N content of 1.81 at%, enhanced electrical conductivity of 31 S cm^(-1), a large surface area of 1531 m^2 g^(-1), a low defect density with a low I_D/I_G ratio of 1.55 calculated from Raman spectrum, and a high oxidation peak of 532.7 ℃ in oxygen atmosphere. The selective distribution of N heteroatoms on the surface of SNG affords the effective exposure of active sites at the interfaces of the electrode/electrolyte, so that more N heteroatoms are able to contact with oxygen feedstocks in oxygen reduction reaction or serve as polysulfide anchoring sites to retard the shuttle of polysulfides in a lithium–sulfur battery. This work opens a fresh viewpoint on the manipulation of active site distribution in a conductive scaffolds for multi-electron redox reaction based energy conversion and storage. 展开更多
关键词 Nitrogen-doped graphene Chemical vapor deposition Oxygen reduction reaction Lithium-sulfur battery Porous carbon materials Exposure of active sites
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部