期刊文献+
共找到61篇文章
< 1 2 4 >
每页显示 20 50 100
An Investigation of Battery Energy Storage Aided Wind-Coal Integrated Energy System
1
作者 Enhui Sun Jiahao Shi +3 位作者 Lei Zhang Hongfu Ji Qian Zhang Yongyi Li 《Energy Engineering》 EI 2023年第7期1583-1602,共20页
This paper studies the feasibility of a supply-side wind-coal integrated energy system.Based on grid-side data,the load regulation model of coal-fired power and the wind-coal integrated energy system model are establi... This paper studies the feasibility of a supply-side wind-coal integrated energy system.Based on grid-side data,the load regulation model of coal-fired power and the wind-coal integrated energy system model are established.According to the simulation results,the reasons why the wind-coal combined power supply is difficult to meet the grid-side demand are revealedthrough scenario analysis.Basedon thewind-coal combinedoperation,a wind-coalstorage integrated energy system was proposed by adding lithium-iron phosphate battery energy storage system(LIPBESS)to adjust the load of the system.According to the four load adjustment scenarios of grid-side instructions of the wind-coal system,the difficulty of load adjustment in each scenario is analyzed.Based on the priority degree of LIPBESS charge/discharge in four scenarios at different time periods,the operation mode of two charges and two discharges per day was developed.Based on the independent operation level of coal-fired power,after the addition of LIPBESS(5.5 MWh),the average qualified rate of multi-power operation in March and June reached the level of independent operation of coal-fired power,while the average qualified rate of the remaining months was only 5.4%different from that of independent operation of coal-fired power.Compared with the wind storage mode,the energy storage capacity and investment cost of wind-coal-storage integrated energy system are reduced by 54.2%and 53.7%,respectively. 展开更多
关键词 Wind power lithium-iron phosphate battery energy storage system coal-fired power integrated energy system
下载PDF
A distributed VSG control method for a battery energy storage system with a cascaded H-bridge in a grid-connected mode 被引量:4
2
作者 Yichi Cai Donglian Qi 《Global Energy Interconnection》 EI CAS CSCD 2022年第4期343-352,共10页
With the high penetration of renewable energy,new challenges,such as power fluctuation suppression and inertial support capability,have arisen in the power sector.Battery energy storage systems play an essential role ... With the high penetration of renewable energy,new challenges,such as power fluctuation suppression and inertial support capability,have arisen in the power sector.Battery energy storage systems play an essential role in renewable energy integration.In this paper,a distributed virtual synchronous generator(VSG)control method for a battery energy storage system(BESS)with a cascaded H-bridge converter in a grid-connected mode is proposed.The VSG is developed without communication dependence,and state-of-charge(SOC)balancing control is achieved using the distributed average algorithm.Owing to the low varying speed of SOC,the bandwidth of the distributed communication networks is extremely slow,which decreases the cost.Therefore,the proposed method can simultaneously provide inertial support and accurate SOC balancing.The stability is also proved using root locus analysis.Finally,simulations under different conditions are carried out to verify the effectiveness of the proposed method. 展开更多
关键词 VSG Cascaded H-bridge converters battery energy storage system Renewable energy integration
下载PDF
Multifunction Battery Energy Storage System for Distribution Networks
3
作者 Omar H.Abdalla Gamal Abdel-Salam Azza A.A.Mostafa 《Energy Engineering》 EI 2022年第2期569-589,共21页
Battery Energy Storage System(BESS)is one of the potential solutions to increase energy system flexibility,as BESS is well suited to solve many challenges in transmission and distribution networks.Examples of distribu... Battery Energy Storage System(BESS)is one of the potential solutions to increase energy system flexibility,as BESS is well suited to solve many challenges in transmission and distribution networks.Examples of distribution network’s challenges,which affect network performance,are:(i)Load disconnection or technical constraints violation,which may happen during reconfiguration after fault,(ii)Unpredictable power generation change due to Photovoltaic(PV)penetration,(iii)Undesirable PV reverse power,and(iv)Low Load Factor(LF)which may affect electricity price.In this paper,the BESS is used to support distribution networks in reconfiguration after a fault,increasing Photovoltaic(PV)penetration,cutting peak load,and loading valley filling.The paper presents a methodology for BESS optimal locations and sizing considering technical constraints during reconfiguration after a fault and PV power generation changes.For determining themaximumpower generation change due to PV,actual power registration of connected PV plants in South Cairo Electricity Distribution Company(SCEDC)was considered for a year.In addition,the paper provides a procedure for distribution network operator to employ the proposed BESS to perform multi functions such as:the ability to absorb PV power surplus,cut peak load and fill load valley for improving network’s performances.The methodology is applied to a modified IEEE 37-node and a real network part consisting of 158 nodes in SCEDC zone.The simulation studies are performed using the DIgSILENT PowerFactory software andDPL programming language.The Mixed Integer Linear Programming optimization technique(MILP)in MATLAB is employed to choose the best locations and sizing of BESS. 展开更多
关键词 battery energy storage system photovoltaic penetration peak load reduction valley filling MILP optimization
下载PDF
Typical Application Scenarios and Economic Benefit Evaluation Methods of Battery Energy Storage System
4
作者 Ming Zeng Haibin Cao +4 位作者 Ting Pan Pinduan Hu Shi Tian Lijun Zhong Zhi Ling 《Energy Engineering》 EI 2022年第4期1569-1586,共18页
Energy storage system is an important means to improve the flexibility and safety of traditional power system,but it has the problem of high cost and unclear value recovery path.In this paper,the typical application s... Energy storage system is an important means to improve the flexibility and safety of traditional power system,but it has the problem of high cost and unclear value recovery path.In this paper,the typical application scenarios of energy storage system are summarized and analyzed from the perspectives of user side,power grid side and power generation side.Based on the typical application scenarios,the economic benefit assessment framework of energy storage system including value,time and efficiency indicators is proposed.Typical battery energy storage projects are selected for economic benefit calculation according to different scenarios,and key factors are selected for sensitivity analysis.Finally,the key factors affecting economic benefit of the energy storage system are analyzed. 展开更多
关键词 battery energy storage system application scenarios economic benefit evaluation sensitivity analysis
下载PDF
Deep reinforcement learning for online scheduling of photovoltaic systems with battery energy storage systems
5
作者 Yaze Li Jingxian Wu Yanjun Pan 《Intelligent and Converged Networks》 EI 2024年第1期28-41,共14页
A new online scheduling algorithm is proposed for photovoltaic(PV)systems with battery-assisted energy storage systems(BESS).The stochastic nature of renewable energy sources necessitates the employment of BESS to bal... A new online scheduling algorithm is proposed for photovoltaic(PV)systems with battery-assisted energy storage systems(BESS).The stochastic nature of renewable energy sources necessitates the employment of BESS to balance energy supplies and demands under uncertain weather conditions.The proposed online scheduling algorithm aims at minimizing the overall energy cost by performing actions such as load shifting and peak shaving through carefully scheduled BESS charging/discharging activities.The scheduling algorithm is developed by using deep deterministic policy gradient(DDPG),a deep reinforcement learning(DRL)algorithm that can deal with continuous state and action spaces.One of the main contributions of this work is a new DDPG reward function,which is designed based on the unique behaviors of energy systems.The new reward function can guide the scheduler to learn the appropriate behaviors of load shifting and peak shaving through a balanced process of exploration and exploitation.The new scheduling algorithm is tested through case studies using real world data,and the results indicate that it outperforms existing algorithms such as Deep Q-learning.The online algorithm can efficiently learn the behaviors of optimum non-casual off-line algorithms. 展开更多
关键词 photovoltaic(PV) battery energy storage system(BESS) Markov decision process(MDP) deep deterministic policy gradient(DDPG)
原文传递
Distributed Step-by-step Finite-time Consensus Design for Battery Energy Storage Devices with Droop Control 被引量:1
6
作者 Yalin Zhang Yunzhong Song Shumin Fei 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2023年第5期1893-1904,共12页
As all generators are distributed in different areas among large scale power systems,the cooperative manipulation of the multi-generator system cannot operate well without consideration of the distance information of ... As all generators are distributed in different areas among large scale power systems,the cooperative manipulation of the multi-generator system cannot operate well without consideration of the distance information of the generators.A distributed step-by-step finite-time consensus scheme for the heterogeneous battery energy storage system(BESS)is proposed in this paper,where the coordinated consensus can come into reality within a limited time,which is appealing for the electrical engineering community.To be concrete,at first,all BESSs are classified into several clusters according to their locations,and in each cluster,there is an active leader in charge of information receiving from outside.Then,in order to coordinate the multi BESSs,five inputs,which are function oriented,were used to achieve energy level balancing,active/reactive power sharing,and the consensus of voltage and frequency of the multi BESSs.Furthermore,the frequency and voltage restoration to the nominal values of the main grid were made possible by the introduction of a virtual leader,which is actually an external leader.Compared with the centralized methods,this control scheme is entirely distributed,and each BESS only utilizes the information of its own and its neighbors.In addition,this control is robust to the load perturbation and the plug-and-play of the communication topology.Finally,some simulation experiments are executed on the modified IEEE 57-bus system to verify the suggested scheme. 展开更多
关键词 battery energy storage system distributed cooperative control finite-time consensus multi-agent system step-by-step consensus
原文传递
Battery energy storage-based system damping controller for alleviating sub-synchronous oscillations in a DFIG-based wind power plant 被引量:1
7
作者 Neevatika Verma Narendra Kumar Rajeev Kumar 《Protection and Control of Modern Power Systems》 SCIE EI 2023年第2期260-277,共18页
This paper presents the issue of the Sub-synchronous resonance(SSR)phenomenon in a series compensated DFIG-based wind power plant and its alleviation using a Battery Energy Storage-based Damping Controller(BESSDCL).A ... This paper presents the issue of the Sub-synchronous resonance(SSR)phenomenon in a series compensated DFIG-based wind power plant and its alleviation using a Battery Energy Storage-based Damping Controller(BESSDCL).A supplementary damping signal is developed considering the angular speed deviation and is incorporated into the BESS control system.Wide-area Measurement System data is used to determine the angular speed deviation.A lin-earized system model is developed to perform eigenvalue analysis,and to detect and examine unstable SSR modes.The variation of wind speed and three-phase fault are also taken into consideration to validate the robustness of the controller.To further verify the efficacy of the proposed damping controller,time-domain simulations are performed using MATLAB/Simulink.The application of the proposed BESSDCL stabilizes all the unstable system modes effectively at wind speeds of 7 m/s,9 m/s,and 11 m/s,and at 40%,50%,and 60%series compensation levels,as well three-phase fault conditions. 展开更多
关键词 battery energy storage system Damping controller Doubly-fed induction generator(DFIG) SERIES
原文传递
A Two-Layer Fuzzy Control Strategy for the Participation of Energy Storage Battery Systems in Grid Frequency Regulation 被引量:1
8
作者 Wei Chen Na Sun +2 位作者 Zhicheng Ma Wenfei Liu Haiying Dong 《Energy Engineering》 EI 2023年第6期1445-1464,共20页
To address the frequency fluctuation problem caused by the power dynamic imbalance between the power system and the loadwhen a large number of newenergy sources are connected to the grid,a two-layer fuzzy control stra... To address the frequency fluctuation problem caused by the power dynamic imbalance between the power system and the loadwhen a large number of newenergy sources are connected to the grid,a two-layer fuzzy control strategy is proposed for the participation of the energy storage battery system in FM.Firstly,considering the coordination of FM units responding to automatic power generation control commands,a comprehensive allocation strategy of two signals under automatic power generation control commands is proposed to give full play to the advantages of two FM signals while enabling better coordination of two FM units responding to FM commands;secondly,based on the grid FM demand and battery FM capability,a double-layer fuzzy control strategy is proposed for FM units responding to automatic power generation control commands in a coordinated manner under dual-signal allocation mode to precisely allocate the power output depth of FM units,which can control the fluctuation of frequency deviation within a smaller range at a faster speed while maintaining the battery charge state;finally,the proposed Finally,the proposed control strategy is simulated and verified inMatlab/Simulink.The results show that the proposed control strategy can control the frequency deviation within a smaller range in a shorter time,better stabilize the fluctuation of the battery charge level,and improve the utilization of the FM unit. 展开更多
关键词 battery energy storage secondary FM signal distribution mode charge state two-layer fuzzy control
下载PDF
Provision of Ramp-rate Limitation as Ancillary Service from Distribution to Transmission System:Definitions and Methodologies for Control and Sizing of Central Battery Energy Storage System
9
作者 Spyros I.Gkavanoudis Kyriaki-Nefeli D.Malamaki +4 位作者 Eleftherios O.Kontis Aditya Shekhar Umer Mushtaq Sagar Bandi Venu Charis S.Demoulias 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2023年第5期1507-1518,共12页
The variability of the output power of distributed renewable energy sources(DRESs)that originate from the fastchanging climatic conditions can negatively affect the grid stability.Therefore,grid operators have incorpo... The variability of the output power of distributed renewable energy sources(DRESs)that originate from the fastchanging climatic conditions can negatively affect the grid stability.Therefore,grid operators have incorporated ramp-rate limitations(RRLs)for the injected DRES power in the grid codes.As the DRES penetration levels increase,the mitigation of high-power ramps is no longer considered as a system support function but rather an ancillary service(AS).Energy storage systems(ESSs)coordinated by RR control algorithms are often applied to mitigate these power fluctuations.However,no unified definition of active power ramps,which is essential to treat the RRL as AS,currently exists.This paper assesses the various definitions for ramp-rate RR and proposes RRL method control for a central battery ESS(BESS)in distribution systems(DSs).The ultimate objective is to restrain high-power ramps at the distribution transformer level so that RRL can be traded as AS to the upstream transmission system(TS).The proposed control is based on the direct control of theΔP/Δt,which means that the control parameters are directly correlated with the RR requirements included in the grid codes.In addition,a novel method for restoring the state of charge(So C)within a specific range following a high ramp-up/down event is proposed.Finally,a parametric method for estimating the sizing of central BESSs(BESS sizing for short)is developed.The BESS sizing is determined by considering the RR requirements,the DRES units,and the load mix of the examined DS.The BESS sizing is directly related to the constant RR achieved using the proposed control.Finally,the proposed methodologies are validated through simulations in MATLAB/Simulink and laboratory tests in a commercially available BESS. 展开更多
关键词 battery energy storage system distributed renewable energy resource SIZING distribution system transmission system ramp-rate limitation state of charge
原文传递
Model Predictive Control Strategy for Residential Battery Energy Storage System in Volatile Electricity Market with Uncertain Daily Cycling Load
10
作者 Dejan P.Jovanović Gerard F.Ledwich Geoffrey R.Walker 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2023年第2期534-543,共10页
This paper presents a control strategy for residential battery energy storage systems,which is aware of volatile electricity markets and uncertain daily cycling loads.The economic benefits of energy trading for prosum... This paper presents a control strategy for residential battery energy storage systems,which is aware of volatile electricity markets and uncertain daily cycling loads.The economic benefits of energy trading for prosumers are achieved through a novel modification of a conventional model predictive control(MPC).The proposed control strategy guarantees an optimal global solution for the applied control action.A new cost function is introduced to model the effects of volatility on customer benefits more effectively.Specifically,the newly presented cost function models a probabilistic relation between the power exchanged with the grid,the net load,and the electricity market.The probabilistic calculation of the cost function shows the dependence on the mathematical expectation of market price and net load.Computational techniques for calculating this value are presented.The proposed strategy differs from the stochastic and robust MPC in that the cost is calculated across the market price and net load variations rather than across model constraints and parameter variations. 展开更多
关键词 Optimal control model predictive control(MPC) energy market nonlinear constrained optimization revenue for battery energy storage system Gaussian mixture model autoregressive integrated moving average model
原文传递
Contingency Reserve Evaluation for Fast Frequency Response of Multiple Battery Energy Storage Systems in a Large-scale Power Grid
11
作者 Indira Alcaide-Godinez Feifei Bai +1 位作者 Tapan Kumar Saha Rizah Memisevic 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2023年第3期873-883,共11页
Recently,the fast frequency response(FFR)service by large-scale battery energy storage systems(BESSs)has been successfully proved to arrest the frequency excursion during an unexpected power outage.However,adequate fr... Recently,the fast frequency response(FFR)service by large-scale battery energy storage systems(BESSs)has been successfully proved to arrest the frequency excursion during an unexpected power outage.However,adequate frequency response relies on proper evaluation of the contingency reserve of BESSs.The BESS FFR reserve is commonly managed under fixed contracts,ignoring various response characteristics of different BESSs and their coexisting interactions.This paper proposes a new methodology based on dynamic grid response and various BESS response characteristics to optimise the FFR reserves and prevent the frequency from breaching the under-frequency load shedding(UFLS)thresholds.The superiority of the proposed method is demonstrated to manage three large-scale BESSs operating simultaneously in an Australian power grid under high renewable penetration scenarios.Further,the proposed method can identify remaining battery power and energy reserve to be safely utilised for other grid services(e.g.,energy arbitrage).The results can provide valuable insights for integrating FFR into conventional ancillary services and techno-effective management of multiple BESSs. 展开更多
关键词 Fast frequency response(FFR) fast frequency contingency reserve multiple large-scale battery energy storage system(BESS) synthetic inertia requirement under-frequency load shedding(UFLS)
原文传递
Optimal control and management of large-scale battery energy storage system to mitigate fluctuation and intermittence of renewable generations 被引量:40
12
作者 Xiangjun LI Liangzhong YAO Dong HUI 《Journal of Modern Power Systems and Clean Energy》 SCIE EI 2016年第4期593-603,共11页
Battery energy storage system(BESS)is one of the effective technologies to deal with power fluctuation and intermittence resulting from grid integration of large renewable generations.In this paper,the system configur... Battery energy storage system(BESS)is one of the effective technologies to deal with power fluctuation and intermittence resulting from grid integration of large renewable generations.In this paper,the system configuration of a China’s national renewable generation demonstration project combining a large-scale BESS with wind farm and photovoltaic(PV)power station,all coupled to a power transmission system,is introduced,and the key technologies including optimal control and management as well as operational status of this BESS are presented.Additionally,the technical benefits of such a large-scale BESS in dealing with power fluctuation and intermittence issues resulting from grid connection of large-scale renewable generation,and for improvement of operation characteristics of transmission grid,are discussed with relevant case studies. 展开更多
关键词 battery energy storage systems Renewable generations Power fluctuation battery energy management system Power control
原文传递
Optimal planning of battery energy storage considering reliability benefit and operation strategy in active distribution system 被引量:25
13
作者 Wenxia LIU Shuya NIU Huiting XU 《Journal of Modern Power Systems and Clean Energy》 SCIE EI 2017年第2期177-186,共10页
In this paper, a cost-benefit analysis based optimal planning model of battery energy storage system(BESS) in active distribution system(ADS) is established considering a new BESS operation strategy. Reliability impro... In this paper, a cost-benefit analysis based optimal planning model of battery energy storage system(BESS) in active distribution system(ADS) is established considering a new BESS operation strategy. Reliability improvement benefit of BESS is considered and a numerical calculation method based on expectation is proposed for simple and convenient calculation of system reliability improvement with BESS in planning phase. Decision variables include both configuration variables and operation strategy control variables. In order to prevent the interaction between two types of variables and enhance global search ability, intelligent single particle optimizer(ISPO) is adopted to optimize this model. Case studies on a modified IEEE benchmark system verified the performance of the proposed operation strategy and optimal planning model of BESS. 展开更多
关键词 battery energy storage system Cost-benefit analysis Reliability improvement benefit Operation strategy Intelligent single particle optimizer
原文传递
Energy Management and Operational Control Methods for Grid Battery Energy Storage Systems 被引量:15
14
作者 Xiangjun Li Shangxing Wang 《CSEE Journal of Power and Energy Systems》 SCIE CSCD 2021年第5期1026-1040,共15页
Energy storage is one of the key means for improving the flexibility,economy and security of power system.It is also important in promoting new energy consumption and the energy Internet.Therefore,energy storage is ex... Energy storage is one of the key means for improving the flexibility,economy and security of power system.It is also important in promoting new energy consumption and the energy Internet.Therefore,energy storage is expected to support distributed power and the micro-grid,promote open sharing and flexible trading of energy production and consumption,and realize multi-functional coordination.In recent years,with the rapid development of the battery energy storage industry,its technology has shown the characteristics and trends for large-scale integration and distributed applications with multi-objective collaboration.As a grid-level application,energy management systems(EMS)of a battery energy storage system(BESS)were deployed in real time at utility control centers as an important component of power grid management.Based on the analysis of the development status of a BESS,this paper introduced application scenarios,such as reduction of power output fluctuations,agreement to the output plan at the renewable energy generation side,power grid frequency adjustment,power flow optimization at the power transmission side,and a distributed and niohile energy storage system at the power distribution side.The studies and application status of a BESS in recent years were reviewed.The energy management,operation control methods,and application scenes of large-scale BESSs were also examined in the study. 展开更多
关键词 battery energy storage system(BESS) energy management systems(EMS) multi-objective collaborative control new energy integration power grid ancillary service.
原文传递
Application and Modeling of Battery Energy Storage in Power Systems 被引量:8
15
作者 Xiaokang Xu Martin Bishop +1 位作者 Donna G.Oikarinen Chen Hao 《CSEE Journal of Power and Energy Systems》 SCIE 2016年第3期82-90,共9页
This paper presents engineering experiences from battery energy storage system(BESS)projects that require design and implementation of specialized power conversion systems(a fast-response,automatic power converter and... This paper presents engineering experiences from battery energy storage system(BESS)projects that require design and implementation of specialized power conversion systems(a fast-response,automatic power converter and controller).These projects concern areas of generation,transmission,and distribution of electric energy,as well as end-energy user benefits,such as grid frequency regulation,renewable energy smoothing and leveling,energy dispatching and arbitrage,power quality and reliability improvements for connected customers,islanding operations,and smart microgrid applications.In general,a grid level BESS project sends an interconnect request to utility power grids in the project development stage.Simulation models of equipment are then sent for a system impact study(e.g.,power flow and/or stability analysis),based on utility grid code requirements.The system study then determines the connection’s technical feasibility and impact of the project on the power grid.In this paper,a set of new BESS models is presented that are configured and parameterized for use in system impact studies as well as transmission planning studies.The models,which have been recently approved and released by the U.S.Western Electricity Coordinating Council(WECC),represent the steady state and dynamic performance of the BESS in several software platforms for power system studies based on operating project performance experience.Model benchmarking results as well as a real system case study are also included in the paper to show that the parameterized and tuned models respond correctly and as expected when system operating conditions change following contingency events.Finally,this paper provides useful guidelines in the use of new models to represent a BESS for power system analysis. 展开更多
关键词 battery energy storage CONTINGENCY frequency regulation power flow analysis power quality power reliability renewable energy smart microgrid stability analysis state of charge system impact studies transmission planning
原文传递
Optimal integration of mobile battery energy storage in distribution system with renewables 被引量:10
16
作者 Yu ZHENG Zhaoyang DONG +4 位作者 Shilin HUANG Ke MENG Fengji LUO Jie HUANG David HILL 《Journal of Modern Power Systems and Clean Energy》 SCIE EI 2015年第4期589-596,共8页
An optimal sizing method is proposed in this paper for mobile battery energy storage system(MBESS)in the distribution system with renewables.The optimization is formulated as a bi-objective problem,considering the rel... An optimal sizing method is proposed in this paper for mobile battery energy storage system(MBESS)in the distribution system with renewables.The optimization is formulated as a bi-objective problem,considering the reliability improvement and energy transaction saving,simultaneously.To evaluate the reliability of distribution system with MBESS and intermittent generation sources,a new framework is proposed,which is based on zone partition and identification of circuit minimal tie sets.Both analytic and simulation methods for reliability assessment are presented and compared in the framework.Case studies on a modified IEEE benchmark system have verified the performance of the proposed approach. 展开更多
关键词 Mobile battery energy storage system(MBESS) RELIABILITY Markov models Monte Carlo simulation
原文传递
Aggregator Service for PV and Battery Energy Storage Systems of Residential Building 被引量:11
17
作者 Jianing Li Zhi Wu +2 位作者 Suyang Zhou Hao Fu Xiao-Ping Zhang 《CSEE Journal of Power and Energy Systems》 SCIE 2015年第4期3-11,共9页
Distributed energy resources(DERs),including photovoltaic(PV)systems,small wind turbines,and energy storage systems(ESSs)are being increasingly installed in many residential units and the industry sector at large.DER ... Distributed energy resources(DERs),including photovoltaic(PV)systems,small wind turbines,and energy storage systems(ESSs)are being increasingly installed in many residential units and the industry sector at large.DER installations in apartment buildings,however,pose a more complex issue particularly in the context of property ownership and the distribution of DR benefits.In this paper,a novel aggregator service is proposed to provide centralized management services for residents and DER asset owners in apartment buildings.The proposed service consists of a business model for billing and benefits distribution,and a model predictive control(MPC)control algorithm for managing and optimizing DER operations.Both physical and communication structures are proposed to ensure the implementation of such aggregator services for buildings.Three billing tariffs,i.e.,flat rate,time-of-use(TOU),and real time pricing(RTP)are compared by way of case studies.The results indicate that the proposed aggregator service is compatible with the business model.It is shown to offer good performance in load shifting,bill savings,and energy trading of DERs.Overall,the aggregator service is expected to provide benefits in reducing the pay back periods of the investment. 展开更多
关键词 Aggregator battery energy storage system(BESS) distributed energy resource(DER) model predictive control(MPC)
原文传递
The operating schedule for battery energy storage companies in electricity market 被引量:4
18
作者 Shengqi ZHANG Yateendra MISHRA +1 位作者 Gerard LEDWICH Yusheng XUE 《Journal of Modern Power Systems and Clean Energy》 SCIE EI 2013年第3期275-284,共10页
This paper presents a series of operating schedules for Battery Energy Storage Companies(BESC)to provide peak shaving and spinning reserve services in the electricity markets under increasing wind penetration.As indiv... This paper presents a series of operating schedules for Battery Energy Storage Companies(BESC)to provide peak shaving and spinning reserve services in the electricity markets under increasing wind penetration.As individual market participants,BESC can bid in ancillary services markets in an Independent System Operator(ISO)and contribute towards frequency and voltage support in the grid.Recent development in batteries technologies and availability of the day-ahead spot market prices would make BESC economically feasible.Profit maximization of BESC is achieved by determining the optimum capacity of Energy Storage Systems(ESS)required for meeting spinning reserve requirements as well as peak shaving.Historic spot market prices and frequency deviations from Australia Energy Market Operator(AEMO)are used for numerical simulations and the economic benefits of BESC is considered reflecting various aspects in Australia’s National Electricity Markets(NEM). 展开更多
关键词 battery energy storage systems Peak shaving Spinning reserve energy market Ancillary services market
原文传递
A Fuzzy Hierarchical Strategy for Improving Frequency Regulation of Battery Energy Storage System 被引量:4
19
作者 Kaifeng Wang Ying Qiao +3 位作者 Lirong Xie Jiaming Li Zongxiang Lu Huan Yang 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2021年第4期689-698,共10页
Battery energy storage systems(BESSs)can provide instantaneous support for frequency regulation(FR)because of their fast response characteristics.However,purely pursuing a better FR effect calls for continually rapid ... Battery energy storage systems(BESSs)can provide instantaneous support for frequency regulation(FR)because of their fast response characteristics.However,purely pursuing a better FR effect calls for continually rapid cycles of BESSs,which shortens their lifetime and deteriorates the operational economy.To coordinate the lifespan savings and the FR effect,this paper presents a control strategy for the FR of BESSs based on fuzzy logic and hierarchical controllers.The fuzzy logic controller improves the effect of FR by adjusting the charging/discharging power of the BESS with a higher response speed and precision based on the area control error(ACE)signal and the change rate of ACE in a non-linear way.Hierarchical controllers effectively reduce the life loss by optimizing the depth of discharge,which ensures that the state of charge(SOC)of BESS is always in the optimal operating range,and the total FR cost is the lowest at this time.The proposed method can achieve the optimal balance between ACE reduction and operational economy of BESS.The effectiveness of the proposed strategy is verified in a two-area power system. 展开更多
关键词 battery energy storage system(BESS) frequency regulation(FR) coordinated control strategy optimal depth of discharge charging/discharging threshold
原文传递
Stochastic coordinated operation of wind and battery energy storage system considering battery degradation 被引量:4
20
作者 Ying WANG Zhi ZHOU +2 位作者 Audun BOTTERUD Kaifeng ZHANG Qia DING 《Journal of Modern Power Systems and Clean Energy》 SCIE EI 2016年第4期581-592,共12页
Grid-scale battery energy storage systems(BESSs)are promising to solve multiple problems for future power systems.Due to the limited lifespan and high cost of BESS,there is a cost-benefit trade-off between battery eff... Grid-scale battery energy storage systems(BESSs)are promising to solve multiple problems for future power systems.Due to the limited lifespan and high cost of BESS,there is a cost-benefit trade-off between battery effort and operational performance.Thus,we develop a battery degradation model to accurately represent the battery degradation and related cost during battery operation and cycling.A linearization method is proposed to transform the developed battery degradation model into the mixed integer linear programming(MILP)optimization problems.The battery degradation model is incorporated with a hybrid deterministic/stochastic look-ahead rolling optimization model of windBESS bidding and operation in the real-time electricity market.Simulation results show that the developed battery degradation model is able to effectively help to extend the battery cycle life and make more profits for wind-BESS.Moreover,the proposed rolling look-ahead operational optimization strategy can utilize the updated wind power forecast,thereby also increase the wind-BESS profit. 展开更多
关键词 Wind power battery energy storage system(BESS) battery degradation Stochastic programming Rolling optimization
原文传递
上一页 1 2 4 下一页 到第
使用帮助 返回顶部