The reliable prediction of state of charge(SOC)is one of the vital functions of advanced battery management system(BMS),which has great significance towards safe operation of electric vehicles.By far,the empirical mod...The reliable prediction of state of charge(SOC)is one of the vital functions of advanced battery management system(BMS),which has great significance towards safe operation of electric vehicles.By far,the empirical model-based and data-driven-based SOC estimation methods of lithium-ion batteries have been comprehensively discussed and reviewed in various literatures.However,few reviews involving SOC estimation focused on electrochemical mechanism,which gives physical explanations to SOC and becomes most attractive candidate for advanced BMS.For this reason,this paper comprehensively surveys on physics-based SOC algorithms applied in advanced BMS.First,the research progresses of physical SOC estimation methods for lithium-ion batteries are thoroughly discussed and corresponding evaluation criteria are carefully elaborated.Second,future perspectives of the current researches on physics-based battery SOC estimation are presented.The insights stated in this paper are expected to catalyze the development and application of the physics-based advanced BMS algorithms.展开更多
Developing technologies that can be applied simultaneously in battery thermal management(BTM)and thermal runaway(TR)mitigation is significant to improving the safety of lithium-ion battery systems.Inorganic phase chan...Developing technologies that can be applied simultaneously in battery thermal management(BTM)and thermal runaway(TR)mitigation is significant to improving the safety of lithium-ion battery systems.Inorganic phase change material(PCM)with nonflammability has the potential to achieve this dual function.This study proposed an encapsulated inorganic phase change material(EPCM)with a heat transfer enhancement for battery systems,where Na_(2)HPO_(4)·12H_(2)O was used as the core PCM encapsulated by silica and the additive of carbon nanotube(CNT)was applied to enhance the thermal conductivity.The microstructure and thermal properties of the EPCM/CNT were analyzed by a series of characterization tests.Two different incorporating methods of CNT were compared and the proper CNT adding amount was also studied.After preparation,the battery thermal management performance and TR propagation mitigation effects of EPCM/CNT were further investigated on the battery modules.The experimental results of thermal management tests showed that EPCM/CNT not only slowed down the temperature rising of the module but also improved the temperature uniformity during normal operation.The peak battery temperature decreased from 76℃to 61.2℃at 2 C discharge rate and the temperature difference was controlled below 3℃.Moreover,the results of TR propagation tests demonstrated that nonflammable EPCM/CNT with good heat absorption could work as a TR barrier,which exhibited effective mitigation on TR and TR propagation.The trigger time of three cells was successfully delayed by 129,474 and 551 s,respectively and the propagation intervals were greatly extended as well.展开更多
Battery production is crucial for determining the quality of electrode,which in turn affects the manufactured battery performance.As battery production is complicated with strongly coupled intermediate and control par...Battery production is crucial for determining the quality of electrode,which in turn affects the manufactured battery performance.As battery production is complicated with strongly coupled intermediate and control parameters,an efficient solution that can perform a reliable sensitivity analysis of the production terms of interest and forecast key battery properties in the early production phase is urgently required.This paper performs detailed sensitivity analysis of key production terms on determining the properties of manufactured battery electrode via advanced data-driven modelling.To be specific,an explainable neural network named generalized additive model with structured interaction(GAM-SI)is designed to predict two key battery properties,including electrode mass loading and porosity,while the effects of four early production terms on manufactured batteries are explained and analysed.The experimental results reveal that the proposed method is able to accurately predict battery electrode properties in the mixing and coating stages.In addition,the importance ratio ranking,global interpretation and local interpretation of both the main effects and pairwise interactions can be effectively visualized by the designed neural network.Due to the merits of interpretability,the proposed GAM-SI can help engineers gain important insights for understanding complicated production behavior,further benefitting smart battery production.展开更多
With the increasing requirements for fast charging and discharging,higher requirements have been put forward for the thermal management of power batteries.Therefore,there is an urgent need to develop efficient heat tr...With the increasing requirements for fast charging and discharging,higher requirements have been put forward for the thermal management of power batteries.Therefore,there is an urgent need to develop efficient heat transfer fluids.As a new type of heat transfer fluids,functional thermal fluids mainly includ-ing nanofluids(NFs)and phase change fluids(PCFs),have the advantages of high heat carrying density,high heat transfer rate,and broad operational temperature range.However,challenges that hinder their practical applications remain.In this paper,we firstly overview the classification,thermophysical prop-erties,drawbacks,and corresponding modifications of functional thermal fluids.For NFs,the high ther-mal conductivity and high convective heat transfer performance were mainly elaborated,while the stability and viscosity issues were also analyzed.And then for PCFs,the high heat carrying density was mainly elaborated,while the problems of supercooling,stability,and viscosity were also analyzed.On this basis,the composite fluids combined NFs and PCFs technology,has been summarized.Furthermore,the thermal properties of traditional fluids,NFs,PCFs,and composite fluids are compared,which proves that functional thermal fluids are a good choice to replace traditional fluids as coolants.Then,battery thermal management system(BTMS)based on functional thermal fluids is summarized in detail,and the thermal management effects and pump consumption are compared with that of water-based BTMS.Finally,the current technical challenges that parameters optimization of functional thermal fluids and structures optimization of BTMS systematically are presented.In the future,it is necessary to pay more attention to using machine learning to predict thermophysical properties of functional thermal fluids and their applications for BTMS under actual vehicle conditions.展开更多
With the increasing attention paid to battery technology,the microscopic reaction mechanism and macroscopic heat transfer process of lithium-ion batteries have been further studied and understood from both academic an...With the increasing attention paid to battery technology,the microscopic reaction mechanism and macroscopic heat transfer process of lithium-ion batteries have been further studied and understood from both academic and industrial perspectives.Temperature,as one of the key parameters in the physical fra mework of batteries,affects the performa nce of the multi-physical fields within the battery,a nd its effective control is crucial.Since the heat generation in the battery is determined by the real-time operating conditions,the battery temperature is essentially controlled by the real-time heat dissipation conditions provided by the battery thermal management system.Conventional battery thermal management systems have basic temperature control capabilities for most conventional application scenarios.However,with the current development of la rge-scale,integrated,and intelligent battery technology,the adva ncement of battery thermal management technology will pay more attention to the effective control of battery temperature under sophisticated situations,such as high power and widely varied operating conditions.In this context,this paper presents the latest advances and representative research related to battery thermal management system.Firstly,starting from battery thermal profile,the mechanism of battery heat generation is discussed in detail.Secondly,the static characteristics of the traditional battery thermal management system are summarized.Then,considering the dynamic requirements of battery heat dissipation under complex operating conditions,the concept of adaptive battery thermal management system is proposed based on specific research cases.Finally,the main challenges for battery thermal management system in practice are identified,and potential future developments to overcome these challenges are presented and discussed.展开更多
The estimation of state of charge(SOC)using deep neural networks(DNN)generally requires a considerable number of labelled samples for training,which refer to the current and voltage pieces with knowing their correspon...The estimation of state of charge(SOC)using deep neural networks(DNN)generally requires a considerable number of labelled samples for training,which refer to the current and voltage pieces with knowing their corresponding SOCs.However,the collection of labelled samples is costly and time-consuming.In contrast,the unlabelled training samples,which consist of the current and voltage data with unknown SOCs,are easy to obtain.In view of this,this paper proposes an improved DNN for SOC estimation by effectively using both a pool of unlabelled samples and a limited number of labelled samples.Besides the traditional supervised network,the proposed method uses an input reconstruction network to reformulate the time dependency features of the voltage and current.In this way,the developed network can extract useful information from the unlabelled samples.The proposed method is validated under different drive cycles and temperature conditions.The results reveal that the SOC estimation accuracy of the DNN trained with both labelled and unlabelled samples outperforms that of only using a limited number of labelled samples.In addition,when the dataset with reduced number of labelled samples to some extent is used to test the developed network,it is found that the proposed method performs well and is robust in producing the model outputs with the required accuracy when the unlabelled samples are involved in the model training.Furthermore,the proposed method is evaluated with different recurrent neural networks(RNNs)applied to the input reconstruction module.The results indicate that the proposed method is feasible for various RNN algorithms,and it could be flexibly applied to other conditions as required.展开更多
The promotion of electric vehicles(EVs)is restricted due to their short cruising range.It is desirable to design an effective energy management strategy to improve their energy efficiency.Most existing work concerning...The promotion of electric vehicles(EVs)is restricted due to their short cruising range.It is desirable to design an effective energy management strategy to improve their energy efficiency.Most existing work concerning energy management strategies focused on hybrids rather than the EVs.The work focusing on the energy management strategy for EVs mainly uses the traditional optimization strategies,thereby limiting the advantages of energy economy.To this end,a novel energy management strategy that considered the impact of battery thermal effects was proposed with the help of reinforcement learning.The main idea was to first analyze the energy flow path of EVs,further formulize the energy management as an optimization problem,and finally propose an online strategy based on reinforcement learning to obtain the optimal strategy.Additionally,extensive simulation results have demonstrated that our strategy reduces energy consumption by at least 27.4%compared to the existing methods.展开更多
Aim To research and develop a battery management system(BMS)with the state of charge(SOC)indicator for electric vehicles (EVs).Methods On the basis of analyzing the electro-chemical characteristics of lead-acid. batte...Aim To research and develop a battery management system(BMS)with the state of charge(SOC)indicator for electric vehicles (EVs).Methods On the basis of analyzing the electro-chemical characteristics of lead-acid. battery, the state of charge indicator for lead-acid battery was developed by means of an algorithm based on combination of ampere-hour, Peukert's equation and open-voltage method with the compensation of temperature,aging,self- discharging,etc..Results The BMS based on this method can attain an accurate surplus capa- city whose error is less than 5% in static experiments.It is proved by experiments that the BMS is reliable and can give the driver an accurate surplus capacity,precisely monitor the individual battery modules as the same time,even detect and warn the problems early,and so on. Conclusion A BMS can make the energy of the storage batteries used efficiently, develop the batteries cycle life,and increase the driving distance of EVs.展开更多
This paper proposes a new battery management system (BMS) based on a master-slave control mode for multi-cell li-ion battery packs. The proposed BMS can be applied in li-ion battery packs with any cell number. The w...This paper proposes a new battery management system (BMS) based on a master-slave control mode for multi-cell li-ion battery packs. The proposed BMS can be applied in li-ion battery packs with any cell number. The whole system is composed of a master processor and a string of slave manager cells (SMCs). Each battery cell corresponds to an SMC. Unlike the conventional BMS, the proposed one has a novel method for communication, and it collects the battery status information in a direct and simple way. An SMC communicates with its adjacent counterparts to transfer the battery information as well as the commands from the master processor. The nethermost SMC communicates with the master processor directly. This method allows the battery management chips to be implemented in a standard CMOS ( complementary metal-oxide-semiconductor transistor) process. A testing chip is fabricated in the CSMC 0.5 μm 5 V N-well CMOS process. The testing results verify that the proposed method for data communication and the battery management system can protect and manage multi-cell li-ion battery packs.展开更多
Lithium-ion batteries are the preferred green energy storage method and are equipped with intelligent battery management systems(BMSs)that efficiently manage the batteries.This not only ensures the safety performance ...Lithium-ion batteries are the preferred green energy storage method and are equipped with intelligent battery management systems(BMSs)that efficiently manage the batteries.This not only ensures the safety performance of the batteries but also significantly improves their efficiency and reduces their damage rate.Throughout their whole life cycle,lithium-ion batteries undergo aging and performance degradation due to diverse external environments and irregular degradation of internal materials.This degradation is reflected in the state of health(SOH)assessment.Therefore,this review offers the first comprehensive analysis of battery SOH estimation strategies across the entire lifecycle over the past five years,highlighting common research focuses rooted in data-driven methods.It delves into various dimensions such as dataset integration and preprocessing,health feature parameter extraction,and the construction of SOH estimation models.These approaches unearth hidden insights within data,addressing the inherent tension between computational complexity and estimation accuracy.To enha nce support for in-vehicle implementation,cloud computing,and the echelon technologies of battery recycling,remanufacturing,and reuse,as well as to offer insights into these technologies,a segmented management approach will be introduced in the future.This will encompass source domain data processing,multi-feature factor reconfiguration,hybrid drive modeling,parameter correction mechanisms,and fulltime health management.Based on the best SOH estimation outcomes,health strategies tailored to different stages can be devised in the future,leading to the establishment of a comprehensive SOH assessment framework.This will mitigate cross-domain distribution disparities and facilitate adaptation to a broader array of dynamic operation protocols.This article reviews the current research landscape from four perspectives and discusses the challenges that lie ahead.Researchers and practitioners can gain a comprehensive understanding of battery SOH estimation methods,offering valuable insights for the development of advanced battery management systems and embedded application research.展开更多
The equivalent circuit model of battery and the analytic model of series battery uniformities are setup. The analysis shows that it is the key to maintain small voltage difference between cells in order to improve uni...The equivalent circuit model of battery and the analytic model of series battery uniformities are setup. The analysis shows that it is the key to maintain small voltage difference between cells in order to improve uniformities. Therefore a new technique combining low voltage difference, big current charging and bi-directional charge equalizer system is put forward and designed. The test shows that the energy transferring dynamic equalization system betters the series battery uniformities and protection during charging and discharging, improves the battery performance and extends the use life of series battery.展开更多
Lithium-ion batteries have always been a focus of research on new energy vehicles,however,their internal reactions are complex,and problems such as battery aging and safety have not been fully understood.In view of th...Lithium-ion batteries have always been a focus of research on new energy vehicles,however,their internal reactions are complex,and problems such as battery aging and safety have not been fully understood.In view of the research and preliminary application of the digital twin in complex systems such as aerospace,we will have the opportunity to use the digital twin to solve the bottleneck of current battery research.Firstly,this paper arranges the development history,basic concepts and key technologies of the digital twin,and summarizes current research methods and challenges in battery modeling,state estimation,remaining useful life prediction,battery safety and control.Furthermore,based on digital twin we describe the solutions for battery digital modeling,real-time state estimation,dynamic charging control,dynamic thermal management,and dynamic equalization control in the intelligent battery management system.We also give development opportunities for digital twin in the battery field.Finally we summarize the development trends and challenges of smart battery management.展开更多
Technologies that accelerate the delivery of reliable battery-based energy storage will not only contribute to decarbonization such as transportation electrification,smart grid,but also strengthen the battery supply c...Technologies that accelerate the delivery of reliable battery-based energy storage will not only contribute to decarbonization such as transportation electrification,smart grid,but also strengthen the battery supply chain.As battery inevitably ages with time,losing its capacity to store charge and deliver it efficiently.This directly affects battery safety and efficiency,making related health management necessary.Recent advancements in automation science and engineering raised interest in AI-based solutions to prolong battery lifetime from both manufacturing and management perspectives.This paper aims at presenting a critical review of the state-of-the-art AI-based manufacturing and management strategies towards long lifetime battery.First,AI-based battery manufacturing and smart battery to benefit battery health are showcased.Then the most adopted AI solutions for battery life diagnostic including state-of-health estimation and ageing prediction are reviewed with a discussion of their advantages and drawbacks.Efforts through designing suitable AI solutions to enhance battery longevity are also presented.Finally,the main challenges involved and potential strategies in this field are suggested.This work will inform insights into the feasible,advanced AI for the health-conscious manufacturing,control and optimization of battery on different technology readiness levels.展开更多
State of Charge (SOC) determination is an increasingly important issue in battery technology. In addition to the immediate display of the remaining battery capacity to the user, precise knowledge of SOC exerts additio...State of Charge (SOC) determination is an increasingly important issue in battery technology. In addition to the immediate display of the remaining battery capacity to the user, precise knowledge of SOC exerts additional control over the charging/discharging process which in turn reduces the risk of over-voltage and gassing, which degrade the chemical composition of the electrolyte and plates. This paper describes a new approach to SOC determination for the lead-acid battery management system by combining Ah-balance with an EMF estimation algorithm, which predicts the battery’s EMF value while it is under load. The EMF estimation algorithm is based on an equivalent-circuit representation of the battery, with the parameters determined from a pulse test performed on the battery and a curve-fitting algorithm by means of least-square regression. The whole battery cycle is classified into seven states where the SOC is estimated with the Ah-balance method and the proposed EMF based algorithm. Laboratory tests and results are described in detail in the paper.展开更多
A comparative numerical study has been conducted on the thermal performance of a heat pipe cooling system considering several influential factors such as the coolant flow rate,the coolant inlet temperature,and the inp...A comparative numerical study has been conducted on the thermal performance of a heat pipe cooling system considering several influential factors such as the coolant flow rate,the coolant inlet temperature,and the input power.A comparison between numerical data and results available in the literature has demonstrated that our numerical procedure could successfully predict the heat transfer performance of the considered heat pipe cooling system for a battery.Specific indicators such as temperature,heat flux,and pressure loss were extracted to describe the characteristics of such a system.On the basis of the distributions of the temperature ratio of the battery surface,together with the heat flux and the streamlines around the heat pipe condenser,we conclude that the low disturbance of the coolant is the cause of the temperature gradient along the fluid flow direction.展开更多
Lithium-ion battery packs are made by many batteries, and the difficulty in heat transfer can cause many safety issues. It is important to evaluate thermal performance of a battery pack in designing process. Here, a m...Lithium-ion battery packs are made by many batteries, and the difficulty in heat transfer can cause many safety issues. It is important to evaluate thermal performance of a battery pack in designing process. Here, a multiscale method combining a pseudo-two-dimensional model of individual battery and three-dimensional computational fluid dynamics is employed to describe heat generation and transfer in a battery pack. The effect of battery arrangement on the thermal performance of battery packs is investigated. We discuss the air-cooling effect of the pack with four battery arrangements which include one square arrangement, one stagger arrangement and two trapezoid arrangements. In addition, the air-cooling strategy is studied by observing temperature distribution of the battery pack. It is found that the square arrangement is the structure with the best air-cooling effect, and the cooling effect is best when the cold air inlet is at the top of the battery pack. We hope that this work can provide theoretical guidance for thermal management of lithium-ion battery packs.展开更多
The battery management system(BMS)is the main safeguard of a battery system for electric propulsion and machine electrifcation.It is tasked to ensure reliable and safe operation of battery cells connected to provide h...The battery management system(BMS)is the main safeguard of a battery system for electric propulsion and machine electrifcation.It is tasked to ensure reliable and safe operation of battery cells connected to provide high currents at high voltage levels.In addition to efectively monitoring all the electrical parameters of a battery pack system,such as the voltage,current,and temperature,the BMS is also used to improve the battery performance with proper safety measures within the system.With growing acceptance of lithium-ion batteries,major industry sectors such as the automotive,renewable energy,manufacturing,construction,and even some in the mining industry have brought forward the mass transition from fossil fuel dependency to electric powered machinery and redefned the world of energy storage.Hence,the functional safety considerations,which are those relating to automatic protection,in battery management for battery pack technologies are particularly important to ensure that the overall electrical system,regardless of whether it is for electric transportation or stationary energy storage,is in accordance with high standards of safety,reliability,and quality.If the system or product fails to meet functional and other safety requirements on account of faulty design or a sequence of failure events,then the environment,people,and property could be endangered.This paper analyzed the details of BMS for electric transportation and large-scale energy storage systems,particularly in areas concerned with hazardous environment.The analysis covers the aspect of functional safety that applies to BMS and is in accordance with the relevant industrial standards.A comprehensive evaluation of the components,architecture,risk reduction techniques,and failure mode analysis applicable to BMS operation was also presented.The article further provided recommendations on safety design and performance optimization in relation to the overall BMS integration.展开更多
基金supported by the Open Project of Hubei Key Laboratory of Power System Design and Test for Electrical Vehicle(No.ZDSYS202304)the National Natural Science Foundation of China(No.62303007)the Anhui Provincial Natural Science Foundation(No.2308085ME142)。
文摘The reliable prediction of state of charge(SOC)is one of the vital functions of advanced battery management system(BMS),which has great significance towards safe operation of electric vehicles.By far,the empirical model-based and data-driven-based SOC estimation methods of lithium-ion batteries have been comprehensively discussed and reviewed in various literatures.However,few reviews involving SOC estimation focused on electrochemical mechanism,which gives physical explanations to SOC and becomes most attractive candidate for advanced BMS.For this reason,this paper comprehensively surveys on physics-based SOC algorithms applied in advanced BMS.First,the research progresses of physical SOC estimation methods for lithium-ion batteries are thoroughly discussed and corresponding evaluation criteria are carefully elaborated.Second,future perspectives of the current researches on physics-based battery SOC estimation are presented.The insights stated in this paper are expected to catalyze the development and application of the physics-based advanced BMS algorithms.
基金financially supported by the National Key Research and Development Program(Grant No.2022YFE0207400)the National Natural Science Foundation of China(Grant No.U22A20168 and 52174225)。
文摘Developing technologies that can be applied simultaneously in battery thermal management(BTM)and thermal runaway(TR)mitigation is significant to improving the safety of lithium-ion battery systems.Inorganic phase change material(PCM)with nonflammability has the potential to achieve this dual function.This study proposed an encapsulated inorganic phase change material(EPCM)with a heat transfer enhancement for battery systems,where Na_(2)HPO_(4)·12H_(2)O was used as the core PCM encapsulated by silica and the additive of carbon nanotube(CNT)was applied to enhance the thermal conductivity.The microstructure and thermal properties of the EPCM/CNT were analyzed by a series of characterization tests.Two different incorporating methods of CNT were compared and the proper CNT adding amount was also studied.After preparation,the battery thermal management performance and TR propagation mitigation effects of EPCM/CNT were further investigated on the battery modules.The experimental results of thermal management tests showed that EPCM/CNT not only slowed down the temperature rising of the module but also improved the temperature uniformity during normal operation.The peak battery temperature decreased from 76℃to 61.2℃at 2 C discharge rate and the temperature difference was controlled below 3℃.Moreover,the results of TR propagation tests demonstrated that nonflammable EPCM/CNT with good heat absorption could work as a TR barrier,which exhibited effective mitigation on TR and TR propagation.The trigger time of three cells was successfully delayed by 129,474 and 551 s,respectively and the propagation intervals were greatly extended as well.
基金supported by the National Natural Science Foundation of China (62373224,62333013,U23A20327)。
文摘Battery production is crucial for determining the quality of electrode,which in turn affects the manufactured battery performance.As battery production is complicated with strongly coupled intermediate and control parameters,an efficient solution that can perform a reliable sensitivity analysis of the production terms of interest and forecast key battery properties in the early production phase is urgently required.This paper performs detailed sensitivity analysis of key production terms on determining the properties of manufactured battery electrode via advanced data-driven modelling.To be specific,an explainable neural network named generalized additive model with structured interaction(GAM-SI)is designed to predict two key battery properties,including electrode mass loading and porosity,while the effects of four early production terms on manufactured batteries are explained and analysed.The experimental results reveal that the proposed method is able to accurately predict battery electrode properties in the mixing and coating stages.In addition,the importance ratio ranking,global interpretation and local interpretation of both the main effects and pairwise interactions can be effectively visualized by the designed neural network.Due to the merits of interpretability,the proposed GAM-SI can help engineers gain important insights for understanding complicated production behavior,further benefitting smart battery production.
基金supported by the National Natural Science Foundation of China(Grant No.52271320)"Mechanics+"interdisciplinary innovation youth fund project of Ningbo University(LJ2023005).
文摘With the increasing requirements for fast charging and discharging,higher requirements have been put forward for the thermal management of power batteries.Therefore,there is an urgent need to develop efficient heat transfer fluids.As a new type of heat transfer fluids,functional thermal fluids mainly includ-ing nanofluids(NFs)and phase change fluids(PCFs),have the advantages of high heat carrying density,high heat transfer rate,and broad operational temperature range.However,challenges that hinder their practical applications remain.In this paper,we firstly overview the classification,thermophysical prop-erties,drawbacks,and corresponding modifications of functional thermal fluids.For NFs,the high ther-mal conductivity and high convective heat transfer performance were mainly elaborated,while the stability and viscosity issues were also analyzed.And then for PCFs,the high heat carrying density was mainly elaborated,while the problems of supercooling,stability,and viscosity were also analyzed.On this basis,the composite fluids combined NFs and PCFs technology,has been summarized.Furthermore,the thermal properties of traditional fluids,NFs,PCFs,and composite fluids are compared,which proves that functional thermal fluids are a good choice to replace traditional fluids as coolants.Then,battery thermal management system(BTMS)based on functional thermal fluids is summarized in detail,and the thermal management effects and pump consumption are compared with that of water-based BTMS.Finally,the current technical challenges that parameters optimization of functional thermal fluids and structures optimization of BTMS systematically are presented.In the future,it is necessary to pay more attention to using machine learning to predict thermophysical properties of functional thermal fluids and their applications for BTMS under actual vehicle conditions.
基金supported by the National Natural Science Foundation of China (No.62373224,62333013,and U23A20327)。
文摘With the increasing attention paid to battery technology,the microscopic reaction mechanism and macroscopic heat transfer process of lithium-ion batteries have been further studied and understood from both academic and industrial perspectives.Temperature,as one of the key parameters in the physical fra mework of batteries,affects the performa nce of the multi-physical fields within the battery,a nd its effective control is crucial.Since the heat generation in the battery is determined by the real-time operating conditions,the battery temperature is essentially controlled by the real-time heat dissipation conditions provided by the battery thermal management system.Conventional battery thermal management systems have basic temperature control capabilities for most conventional application scenarios.However,with the current development of la rge-scale,integrated,and intelligent battery technology,the adva ncement of battery thermal management technology will pay more attention to the effective control of battery temperature under sophisticated situations,such as high power and widely varied operating conditions.In this context,this paper presents the latest advances and representative research related to battery thermal management system.Firstly,starting from battery thermal profile,the mechanism of battery heat generation is discussed in detail.Secondly,the static characteristics of the traditional battery thermal management system are summarized.Then,considering the dynamic requirements of battery heat dissipation under complex operating conditions,the concept of adaptive battery thermal management system is proposed based on specific research cases.Finally,the main challenges for battery thermal management system in practice are identified,and potential future developments to overcome these challenges are presented and discussed.
基金the financial support from the China Scholarship Council(CSC)(No.202207550010)。
文摘The estimation of state of charge(SOC)using deep neural networks(DNN)generally requires a considerable number of labelled samples for training,which refer to the current and voltage pieces with knowing their corresponding SOCs.However,the collection of labelled samples is costly and time-consuming.In contrast,the unlabelled training samples,which consist of the current and voltage data with unknown SOCs,are easy to obtain.In view of this,this paper proposes an improved DNN for SOC estimation by effectively using both a pool of unlabelled samples and a limited number of labelled samples.Besides the traditional supervised network,the proposed method uses an input reconstruction network to reformulate the time dependency features of the voltage and current.In this way,the developed network can extract useful information from the unlabelled samples.The proposed method is validated under different drive cycles and temperature conditions.The results reveal that the SOC estimation accuracy of the DNN trained with both labelled and unlabelled samples outperforms that of only using a limited number of labelled samples.In addition,when the dataset with reduced number of labelled samples to some extent is used to test the developed network,it is found that the proposed method performs well and is robust in producing the model outputs with the required accuracy when the unlabelled samples are involved in the model training.Furthermore,the proposed method is evaluated with different recurrent neural networks(RNNs)applied to the input reconstruction module.The results indicate that the proposed method is feasible for various RNN algorithms,and it could be flexibly applied to other conditions as required.
基金National Natural Science Foundation of China(Nos.61772130 and 62072096)Fundamental Research Funds for the Central Universities+2 种基金China(No.2232020A-12)International Cooperation Program of Shanghai Science and Technology Commission,China(No.20220713000)Young Top-Notch Talent Program in Shanghai,China。
文摘The promotion of electric vehicles(EVs)is restricted due to their short cruising range.It is desirable to design an effective energy management strategy to improve their energy efficiency.Most existing work concerning energy management strategies focused on hybrids rather than the EVs.The work focusing on the energy management strategy for EVs mainly uses the traditional optimization strategies,thereby limiting the advantages of energy economy.To this end,a novel energy management strategy that considered the impact of battery thermal effects was proposed with the help of reinforcement learning.The main idea was to first analyze the energy flow path of EVs,further formulize the energy management as an optimization problem,and finally propose an online strategy based on reinforcement learning to obtain the optimal strategy.Additionally,extensive simulation results have demonstrated that our strategy reduces energy consumption by at least 27.4%compared to the existing methods.
文摘Aim To research and develop a battery management system(BMS)with the state of charge(SOC)indicator for electric vehicles (EVs).Methods On the basis of analyzing the electro-chemical characteristics of lead-acid. battery, the state of charge indicator for lead-acid battery was developed by means of an algorithm based on combination of ampere-hour, Peukert's equation and open-voltage method with the compensation of temperature,aging,self- discharging,etc..Results The BMS based on this method can attain an accurate surplus capa- city whose error is less than 5% in static experiments.It is proved by experiments that the BMS is reliable and can give the driver an accurate surplus capacity,precisely monitor the individual battery modules as the same time,even detect and warn the problems early,and so on. Conclusion A BMS can make the energy of the storage batteries used efficiently, develop the batteries cycle life,and increase the driving distance of EVs.
基金The Key Science and Technology Project of Zhejiang Province(No.2007C21021)
文摘This paper proposes a new battery management system (BMS) based on a master-slave control mode for multi-cell li-ion battery packs. The proposed BMS can be applied in li-ion battery packs with any cell number. The whole system is composed of a master processor and a string of slave manager cells (SMCs). Each battery cell corresponds to an SMC. Unlike the conventional BMS, the proposed one has a novel method for communication, and it collects the battery status information in a direct and simple way. An SMC communicates with its adjacent counterparts to transfer the battery information as well as the commands from the master processor. The nethermost SMC communicates with the master processor directly. This method allows the battery management chips to be implemented in a standard CMOS ( complementary metal-oxide-semiconductor transistor) process. A testing chip is fabricated in the CSMC 0.5 μm 5 V N-well CMOS process. The testing results verify that the proposed method for data communication and the battery management system can protect and manage multi-cell li-ion battery packs.
基金supported by the National Natural Science Foundation of China (No.62173281,52377217,U23A20651)Sichuan Science and Technology Program (No.24NSFSC0024,23ZDYF0734,23NSFSC1436)+2 种基金Dazhou City School Cooperation Project (No.DZXQHZ006)Technopole Talent Summit Project (No.KJCRCFH08)Robert Gordon University。
文摘Lithium-ion batteries are the preferred green energy storage method and are equipped with intelligent battery management systems(BMSs)that efficiently manage the batteries.This not only ensures the safety performance of the batteries but also significantly improves their efficiency and reduces their damage rate.Throughout their whole life cycle,lithium-ion batteries undergo aging and performance degradation due to diverse external environments and irregular degradation of internal materials.This degradation is reflected in the state of health(SOH)assessment.Therefore,this review offers the first comprehensive analysis of battery SOH estimation strategies across the entire lifecycle over the past five years,highlighting common research focuses rooted in data-driven methods.It delves into various dimensions such as dataset integration and preprocessing,health feature parameter extraction,and the construction of SOH estimation models.These approaches unearth hidden insights within data,addressing the inherent tension between computational complexity and estimation accuracy.To enha nce support for in-vehicle implementation,cloud computing,and the echelon technologies of battery recycling,remanufacturing,and reuse,as well as to offer insights into these technologies,a segmented management approach will be introduced in the future.This will encompass source domain data processing,multi-feature factor reconfiguration,hybrid drive modeling,parameter correction mechanisms,and fulltime health management.Based on the best SOH estimation outcomes,health strategies tailored to different stages can be devised in the future,leading to the establishment of a comprehensive SOH assessment framework.This will mitigate cross-domain distribution disparities and facilitate adaptation to a broader array of dynamic operation protocols.This article reviews the current research landscape from four perspectives and discusses the challenges that lie ahead.Researchers and practitioners can gain a comprehensive understanding of battery SOH estimation methods,offering valuable insights for the development of advanced battery management systems and embedded application research.
基金supported in part by National Natural Science Foundation of China(61533017,61273140,61304079,61374105,61379099,61233001)Fundamental Research Funds for the Central Universities(FRF-TP-15-056A3)the Open Research Project from SKLMCCS(20150104)
基金supported by the High Technology Research and Development Program of Jilin(20130204021GX)the Specialized Research Fund for Graduate Course Identification System Program(Jilin University)of China(450060523183)+2 种基金the National Natural Science Foundation of China(61520106008,U1564207,61503149)the Education Department of Jilin Province of China(2016430)the Graduate Innovation Fund of Jilin University(2016030)
文摘The equivalent circuit model of battery and the analytic model of series battery uniformities are setup. The analysis shows that it is the key to maintain small voltage difference between cells in order to improve uniformities. Therefore a new technique combining low voltage difference, big current charging and bi-directional charge equalizer system is put forward and designed. The test shows that the energy transferring dynamic equalization system betters the series battery uniformities and protection during charging and discharging, improves the battery performance and extends the use life of series battery.
基金Supported by National Natural Science Foundation of China(Grant No.51922006).
文摘Lithium-ion batteries have always been a focus of research on new energy vehicles,however,their internal reactions are complex,and problems such as battery aging and safety have not been fully understood.In view of the research and preliminary application of the digital twin in complex systems such as aerospace,we will have the opportunity to use the digital twin to solve the bottleneck of current battery research.Firstly,this paper arranges the development history,basic concepts and key technologies of the digital twin,and summarizes current research methods and challenges in battery modeling,state estimation,remaining useful life prediction,battery safety and control.Furthermore,based on digital twin we describe the solutions for battery digital modeling,real-time state estimation,dynamic charging control,dynamic thermal management,and dynamic equalization control in the intelligent battery management system.We also give development opportunities for digital twin in the battery field.Finally we summarize the development trends and challenges of smart battery management.
基金This work was supported by the UK HVM Catapult project(8248 CORE)the National Natural Science Foundation of China(52072038,62122041).
文摘Technologies that accelerate the delivery of reliable battery-based energy storage will not only contribute to decarbonization such as transportation electrification,smart grid,but also strengthen the battery supply chain.As battery inevitably ages with time,losing its capacity to store charge and deliver it efficiently.This directly affects battery safety and efficiency,making related health management necessary.Recent advancements in automation science and engineering raised interest in AI-based solutions to prolong battery lifetime from both manufacturing and management perspectives.This paper aims at presenting a critical review of the state-of-the-art AI-based manufacturing and management strategies towards long lifetime battery.First,AI-based battery manufacturing and smart battery to benefit battery health are showcased.Then the most adopted AI solutions for battery life diagnostic including state-of-health estimation and ageing prediction are reviewed with a discussion of their advantages and drawbacks.Efforts through designing suitable AI solutions to enhance battery longevity are also presented.Finally,the main challenges involved and potential strategies in this field are suggested.This work will inform insights into the feasible,advanced AI for the health-conscious manufacturing,control and optimization of battery on different technology readiness levels.
文摘State of Charge (SOC) determination is an increasingly important issue in battery technology. In addition to the immediate display of the remaining battery capacity to the user, precise knowledge of SOC exerts additional control over the charging/discharging process which in turn reduces the risk of over-voltage and gassing, which degrade the chemical composition of the electrolyte and plates. This paper describes a new approach to SOC determination for the lead-acid battery management system by combining Ah-balance with an EMF estimation algorithm, which predicts the battery’s EMF value while it is under load. The EMF estimation algorithm is based on an equivalent-circuit representation of the battery, with the parameters determined from a pulse test performed on the battery and a curve-fitting algorithm by means of least-square regression. The whole battery cycle is classified into seven states where the SOC is estimated with the Ah-balance method and the proposed EMF based algorithm. Laboratory tests and results are described in detail in the paper.
基金supported by National Natural Science Foundation of China(61520106008,U1564207,61503149)High Technology Research and Development Program of Jilin(20130204021GX)+1 种基金Specialized Research Fund for Graduate Course Identification System Program(Jilin University)of China(450060523183)Graduate Innovation Fund of Jilin University(2015148)
基金by the Natural Science Foundation of Jiangsu Province(Grants No.BK20170317).
文摘A comparative numerical study has been conducted on the thermal performance of a heat pipe cooling system considering several influential factors such as the coolant flow rate,the coolant inlet temperature,and the input power.A comparison between numerical data and results available in the literature has demonstrated that our numerical procedure could successfully predict the heat transfer performance of the considered heat pipe cooling system for a battery.Specific indicators such as temperature,heat flux,and pressure loss were extracted to describe the characteristics of such a system.On the basis of the distributions of the temperature ratio of the battery surface,together with the heat flux and the streamlines around the heat pipe condenser,we conclude that the low disturbance of the coolant is the cause of the temperature gradient along the fluid flow direction.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 91834301 and 22078088)the National Natural Science Foundation of China for Innovative Research Groups (Grant No. 51621002)the Shanghai Rising-Star Program (Grant No. 21QA1401900)。
文摘Lithium-ion battery packs are made by many batteries, and the difficulty in heat transfer can cause many safety issues. It is important to evaluate thermal performance of a battery pack in designing process. Here, a multiscale method combining a pseudo-two-dimensional model of individual battery and three-dimensional computational fluid dynamics is employed to describe heat generation and transfer in a battery pack. The effect of battery arrangement on the thermal performance of battery packs is investigated. We discuss the air-cooling effect of the pack with four battery arrangements which include one square arrangement, one stagger arrangement and two trapezoid arrangements. In addition, the air-cooling strategy is studied by observing temperature distribution of the battery pack. It is found that the square arrangement is the structure with the best air-cooling effect, and the cooling effect is best when the cold air inlet is at the top of the battery pack. We hope that this work can provide theoretical guidance for thermal management of lithium-ion battery packs.
基金supported by Azure Mining Technology,CCTEG,and the University of Wollongong.
文摘The battery management system(BMS)is the main safeguard of a battery system for electric propulsion and machine electrifcation.It is tasked to ensure reliable and safe operation of battery cells connected to provide high currents at high voltage levels.In addition to efectively monitoring all the electrical parameters of a battery pack system,such as the voltage,current,and temperature,the BMS is also used to improve the battery performance with proper safety measures within the system.With growing acceptance of lithium-ion batteries,major industry sectors such as the automotive,renewable energy,manufacturing,construction,and even some in the mining industry have brought forward the mass transition from fossil fuel dependency to electric powered machinery and redefned the world of energy storage.Hence,the functional safety considerations,which are those relating to automatic protection,in battery management for battery pack technologies are particularly important to ensure that the overall electrical system,regardless of whether it is for electric transportation or stationary energy storage,is in accordance with high standards of safety,reliability,and quality.If the system or product fails to meet functional and other safety requirements on account of faulty design or a sequence of failure events,then the environment,people,and property could be endangered.This paper analyzed the details of BMS for electric transportation and large-scale energy storage systems,particularly in areas concerned with hazardous environment.The analysis covers the aspect of functional safety that applies to BMS and is in accordance with the relevant industrial standards.A comprehensive evaluation of the components,architecture,risk reduction techniques,and failure mode analysis applicable to BMS operation was also presented.The article further provided recommendations on safety design and performance optimization in relation to the overall BMS integration.