To reduce the thermal shrinkage of the polymeric separators and improve the safety of the Li-ion batteries,plasma treatment and plasma enhanced vapor chemical deposition(PECVD)of SiO_x-like are carried out on polypr...To reduce the thermal shrinkage of the polymeric separators and improve the safety of the Li-ion batteries,plasma treatment and plasma enhanced vapor chemical deposition(PECVD)of SiO_x-like are carried out on polypropylene(PP)separators,respectively.Critical parameters for separator properties,such as the thermal shrinkage rate,porosity,wettability,and mechanical strength,are evaluated on the plasma treated PP membranes.O_2 plasma treatment is found to remarkably improve the wettability,porosity and electrolyte uptake.PECVD SiO_x-like coatings are found to be able to effectively reduce the thermal shrinkage rate of the membranes and increase the ionic conductivity.The electrolyte-philicity of the Si Ox-like coating surface can be tuned by the varying O_2 content in the gas mixture during the deposition.Though still acceptable,the mechanical strength is reduced after PECVD,which is due to the plasma etching.展开更多
A kind of octanol-modifded silica nanoparticle was fabricated and employed as a framework to form‘‘soggy sand’’electrolyte along with 1-butyl-3-methylimidazolium tetrafluoroborate.‘‘Soggy sand’’and poly(vinyl...A kind of octanol-modifded silica nanoparticle was fabricated and employed as a framework to form‘‘soggy sand’’electrolyte along with 1-butyl-3-methylimidazolium tetrafluoroborate.‘‘Soggy sand’’and poly(vinylidene fluoride-hexafluoropropylene)composite electrolyte membranes were electrospun for the frst time.The properties of this membrane electrolyte have been evaluated by the mechanical test and electrochemical test.The Young’s modulus increased by 275%from 6.8 MPa to 25.5 MPa and the electrical conductivity increased to 7.6 10à5S/cm at 290.15 K when compared to pristine P(VdF-HFP)membrane electrolyte.The conductivity is 3.1 10à4S/cm at 323.15 K.展开更多
1 Results Electrospinning has attracted immense attention recently as a versatile and easy method to prepare polymer membranes that are made up of thin fibers of micron and sub-micron diameters.Such membranes are part...1 Results Electrospinning has attracted immense attention recently as a versatile and easy method to prepare polymer membranes that are made up of thin fibers of micron and sub-micron diameters.Such membranes are particularly suitable as host matrices for polymer electrolytes (PEs) since the interlaying of fibers generate large porosity with fully interconnected pore structure facilitating the easy transport of ions.Characterization of PEs based on electrospun membranes of poly(vinylidene fluoride) (PVd...展开更多
基金supported by National Natural Science Foundation of China(Nos.11175024,11375031)the Beijing Institute of Graphic and Communication Key Project of China(No.23190113051)+2 种基金the Shenzhen Science and Technology Innovation Committee of China(No.JCYJ20130329181509637)BJNSFC(No.KZ201510015014)the State Key Laboratory of Electrical Insulation and Power Equipment of China(No.EIPE15208)
文摘To reduce the thermal shrinkage of the polymeric separators and improve the safety of the Li-ion batteries,plasma treatment and plasma enhanced vapor chemical deposition(PECVD)of SiO_x-like are carried out on polypropylene(PP)separators,respectively.Critical parameters for separator properties,such as the thermal shrinkage rate,porosity,wettability,and mechanical strength,are evaluated on the plasma treated PP membranes.O_2 plasma treatment is found to remarkably improve the wettability,porosity and electrolyte uptake.PECVD SiO_x-like coatings are found to be able to effectively reduce the thermal shrinkage rate of the membranes and increase the ionic conductivity.The electrolyte-philicity of the Si Ox-like coating surface can be tuned by the varying O_2 content in the gas mixture during the deposition.Though still acceptable,the mechanical strength is reduced after PECVD,which is due to the plasma etching.
基金supported by National Key Basic Research Program of China, 973 Program (Nos. 2012CB932800 and 2011CB93570)
文摘A kind of octanol-modifded silica nanoparticle was fabricated and employed as a framework to form‘‘soggy sand’’electrolyte along with 1-butyl-3-methylimidazolium tetrafluoroborate.‘‘Soggy sand’’and poly(vinylidene fluoride-hexafluoropropylene)composite electrolyte membranes were electrospun for the frst time.The properties of this membrane electrolyte have been evaluated by the mechanical test and electrochemical test.The Young’s modulus increased by 275%from 6.8 MPa to 25.5 MPa and the electrical conductivity increased to 7.6 10à5S/cm at 290.15 K when compared to pristine P(VdF-HFP)membrane electrolyte.The conductivity is 3.1 10à4S/cm at 323.15 K.
文摘1 Results Electrospinning has attracted immense attention recently as a versatile and easy method to prepare polymer membranes that are made up of thin fibers of micron and sub-micron diameters.Such membranes are particularly suitable as host matrices for polymer electrolytes (PEs) since the interlaying of fibers generate large porosity with fully interconnected pore structure facilitating the easy transport of ions.Characterization of PEs based on electrospun membranes of poly(vinylidene fluoride) (PVd...