Developing technologies that can be applied simultaneously in battery thermal management(BTM)and thermal runaway(TR)mitigation is significant to improving the safety of lithium-ion battery systems.Inorganic phase chan...Developing technologies that can be applied simultaneously in battery thermal management(BTM)and thermal runaway(TR)mitigation is significant to improving the safety of lithium-ion battery systems.Inorganic phase change material(PCM)with nonflammability has the potential to achieve this dual function.This study proposed an encapsulated inorganic phase change material(EPCM)with a heat transfer enhancement for battery systems,where Na_(2)HPO_(4)·12H_(2)O was used as the core PCM encapsulated by silica and the additive of carbon nanotube(CNT)was applied to enhance the thermal conductivity.The microstructure and thermal properties of the EPCM/CNT were analyzed by a series of characterization tests.Two different incorporating methods of CNT were compared and the proper CNT adding amount was also studied.After preparation,the battery thermal management performance and TR propagation mitigation effects of EPCM/CNT were further investigated on the battery modules.The experimental results of thermal management tests showed that EPCM/CNT not only slowed down the temperature rising of the module but also improved the temperature uniformity during normal operation.The peak battery temperature decreased from 76℃to 61.2℃at 2 C discharge rate and the temperature difference was controlled below 3℃.Moreover,the results of TR propagation tests demonstrated that nonflammable EPCM/CNT with good heat absorption could work as a TR barrier,which exhibited effective mitigation on TR and TR propagation.The trigger time of three cells was successfully delayed by 129,474 and 551 s,respectively and the propagation intervals were greatly extended as well.展开更多
With the increasing attention paid to battery technology,the microscopic reaction mechanism and macroscopic heat transfer process of lithium-ion batteries have been further studied and understood from both academic an...With the increasing attention paid to battery technology,the microscopic reaction mechanism and macroscopic heat transfer process of lithium-ion batteries have been further studied and understood from both academic and industrial perspectives.Temperature,as one of the key parameters in the physical fra mework of batteries,affects the performa nce of the multi-physical fields within the battery,a nd its effective control is crucial.Since the heat generation in the battery is determined by the real-time operating conditions,the battery temperature is essentially controlled by the real-time heat dissipation conditions provided by the battery thermal management system.Conventional battery thermal management systems have basic temperature control capabilities for most conventional application scenarios.However,with the current development of la rge-scale,integrated,and intelligent battery technology,the adva ncement of battery thermal management technology will pay more attention to the effective control of battery temperature under sophisticated situations,such as high power and widely varied operating conditions.In this context,this paper presents the latest advances and representative research related to battery thermal management system.Firstly,starting from battery thermal profile,the mechanism of battery heat generation is discussed in detail.Secondly,the static characteristics of the traditional battery thermal management system are summarized.Then,considering the dynamic requirements of battery heat dissipation under complex operating conditions,the concept of adaptive battery thermal management system is proposed based on specific research cases.Finally,the main challenges for battery thermal management system in practice are identified,and potential future developments to overcome these challenges are presented and discussed.展开更多
With the increasing requirements for fast charging and discharging,higher requirements have been put forward for the thermal management of power batteries.Therefore,there is an urgent need to develop efficient heat tr...With the increasing requirements for fast charging and discharging,higher requirements have been put forward for the thermal management of power batteries.Therefore,there is an urgent need to develop efficient heat transfer fluids.As a new type of heat transfer fluids,functional thermal fluids mainly includ-ing nanofluids(NFs)and phase change fluids(PCFs),have the advantages of high heat carrying density,high heat transfer rate,and broad operational temperature range.However,challenges that hinder their practical applications remain.In this paper,we firstly overview the classification,thermophysical prop-erties,drawbacks,and corresponding modifications of functional thermal fluids.For NFs,the high ther-mal conductivity and high convective heat transfer performance were mainly elaborated,while the stability and viscosity issues were also analyzed.And then for PCFs,the high heat carrying density was mainly elaborated,while the problems of supercooling,stability,and viscosity were also analyzed.On this basis,the composite fluids combined NFs and PCFs technology,has been summarized.Furthermore,the thermal properties of traditional fluids,NFs,PCFs,and composite fluids are compared,which proves that functional thermal fluids are a good choice to replace traditional fluids as coolants.Then,battery thermal management system(BTMS)based on functional thermal fluids is summarized in detail,and the thermal management effects and pump consumption are compared with that of water-based BTMS.Finally,the current technical challenges that parameters optimization of functional thermal fluids and structures optimization of BTMS systematically are presented.In the future,it is necessary to pay more attention to using machine learning to predict thermophysical properties of functional thermal fluids and their applications for BTMS under actual vehicle conditions.展开更多
The serpentine tube liquid cooling and composite PCM coupled cooling thermal management system is designed for 18650 cylindrical power batteries,with the maximum temperature and temperature difference of the power pac...The serpentine tube liquid cooling and composite PCM coupled cooling thermal management system is designed for 18650 cylindrical power batteries,with the maximum temperature and temperature difference of the power pack within the optimal temperature operating range as the target.The initial analysis of the battery pack at a 5C discharge rate,the influence of the single cell to cooling tube distance,the number of cooling tubes,inlet coolant temperature,the coolant flow rate,and other factors on the heat dissipation performance of the battery pack,initially determined a reasonable value for each design parameter.A control strategy is used to regulate the inlet flow rate and coolant temperature of the liquid cooling system in order to make full use of the latent heat of the composite PCM and reduce the pump’s energy consumption.The simulation results show that the maximum battery pack temperature of 309.8 K and the temperature difference of 4.6 K between individual cells with the control strategy are in the optimal temperature operating range of the power battery,and the utilization rate of the composite PCM is up to 90%.展开更多
The promotion of electric vehicles(EVs)is restricted due to their short cruising range.It is desirable to design an effective energy management strategy to improve their energy efficiency.Most existing work concerning...The promotion of electric vehicles(EVs)is restricted due to their short cruising range.It is desirable to design an effective energy management strategy to improve their energy efficiency.Most existing work concerning energy management strategies focused on hybrids rather than the EVs.The work focusing on the energy management strategy for EVs mainly uses the traditional optimization strategies,thereby limiting the advantages of energy economy.To this end,a novel energy management strategy that considered the impact of battery thermal effects was proposed with the help of reinforcement learning.The main idea was to first analyze the energy flow path of EVs,further formulize the energy management as an optimization problem,and finally propose an online strategy based on reinforcement learning to obtain the optimal strategy.Additionally,extensive simulation results have demonstrated that our strategy reduces energy consumption by at least 27.4%compared to the existing methods.展开更多
Due to the heat pipes’ transient conduction,phase change and fluid dynamics during cooling/heating with high frequency charging/discharging of batteries,it is crucial to investigate in depth the experimental dynamic ...Due to the heat pipes’ transient conduction,phase change and fluid dynamics during cooling/heating with high frequency charging/discharging of batteries,it is crucial to investigate in depth the experimental dynamic thermal characteristics in such complex heat transfer processes for more accurate thermal analysis and design of a BTMS. In this paper,the use of ultra?thin micro heat pipe(UMHP) for thermal management of a lithium?ion battery pack in EVs is explored by experiments to reveal the cooling/heating characteristics of the UMHP pack. The cooling performance is evaluated under di erent constant discharging and transient heat inputs conditions. And the heating e ciency is assessed under several sub?zero temperatures through heating films with/without UMHPs. Results show that the pro?posed UMHP BTMS with forced convection can keep the maximum temperature of the pack below 40 °C under 1 ~ 3 C discharging,and e ectively reduced the instant temperature increases and minimize the temperature fluctuation of the pack during transient federal urban driving schedule(FUDS) road conditions. Experimental data also indicate that heating films stuck on the fins of UMHPs brought about adequate high heating e ciency comparing with that stuck on the surface of cells under the same heating power,but has more convenient maintenance and less cost for the BTMS. The experimental dynamic temperature characteristics of UMHP which is found to be a high?e cient and low?energy consumption cooling/heating method for BTMSs,can be performed to guide thermal analysis and optimiza?tion of heat pipe BTMSs.展开更多
Single cell temperature difference of lithium-ion battery(LIB) module will significantly affect the safety and cycle life of the battery. The reciprocating air-flow module created by a periodic reversal of the air flo...Single cell temperature difference of lithium-ion battery(LIB) module will significantly affect the safety and cycle life of the battery. The reciprocating air-flow module created by a periodic reversal of the air flow was investigated in an effort to mitigate the inherent temperature gradient problem of the conventional battery system with a unidirectional coolant flow with computational fluid dynamics(CFD). Orthogonal experiment and optimization design method based on computational fluid dynamics virtual experiments were developed. A set of optimized design factors for the cooling of reciprocating air flow of LIB thermal management was determined. The simulation experiments show that the reciprocating flow can achieve good heat dissipation, reduce the temperature difference, improve the temperature homogeneity and effectively lower the maximal temperature of the modular battery. The reciprocating flow improves the safety, long-term performance and life span of LIB.展开更多
Lithium-ion battery packs are made by many batteries, and the difficulty in heat transfer can cause many safety issues. It is important to evaluate thermal performance of a battery pack in designing process. Here, a m...Lithium-ion battery packs are made by many batteries, and the difficulty in heat transfer can cause many safety issues. It is important to evaluate thermal performance of a battery pack in designing process. Here, a multiscale method combining a pseudo-two-dimensional model of individual battery and three-dimensional computational fluid dynamics is employed to describe heat generation and transfer in a battery pack. The effect of battery arrangement on the thermal performance of battery packs is investigated. We discuss the air-cooling effect of the pack with four battery arrangements which include one square arrangement, one stagger arrangement and two trapezoid arrangements. In addition, the air-cooling strategy is studied by observing temperature distribution of the battery pack. It is found that the square arrangement is the structure with the best air-cooling effect, and the cooling effect is best when the cold air inlet is at the top of the battery pack. We hope that this work can provide theoretical guidance for thermal management of lithium-ion battery packs.展开更多
A comparative numerical study has been conducted on the thermal performance of a heat pipe cooling system considering several influential factors such as the coolant flow rate,the coolant inlet temperature,and the inp...A comparative numerical study has been conducted on the thermal performance of a heat pipe cooling system considering several influential factors such as the coolant flow rate,the coolant inlet temperature,and the input power.A comparison between numerical data and results available in the literature has demonstrated that our numerical procedure could successfully predict the heat transfer performance of the considered heat pipe cooling system for a battery.Specific indicators such as temperature,heat flux,and pressure loss were extracted to describe the characteristics of such a system.On the basis of the distributions of the temperature ratio of the battery surface,together with the heat flux and the streamlines around the heat pipe condenser,we conclude that the low disturbance of the coolant is the cause of the temperature gradient along the fluid flow direction.展开更多
Designing a good energy storage system represents the most important chall</span><span style="font-family:Verdana;">enge for spreading over a large scale of electric mobility. Proper thermal</...Designing a good energy storage system represents the most important chall</span><span style="font-family:Verdana;">enge for spreading over a large scale of electric mobility. Proper thermal</span> <span style="font-family:Verdana;">management is critical and guarantees optimum working temperature in a</span><span style="font-family:Verdana;"> battery pack. In the various battery thermal management technologies, air cooling is one of the most used solutions. The following work analyzes the cooling performance of the air-cooling thermal management system by choosing appropriate system parameters and analyzes using CFD simulations for accurate thermal modeling. These parameters include the influence of airflow rate </span><span style="font-family:Verdana;">and cell spacing on the configuration. The outcome of the simulations is</span><span style="font-family:Verdana;"> compared using parameters like maximum temperature, and temperature distribution in the battery module to obtain optimum results for further applications. Finally, the simulations of the optimal solution will be compared to experimental results for validation.展开更多
Phase change materials(PCMs)are expected to achieve dual-mode thermal management for heating and cooling Li-ion batteries(LIBs)according to real-time thermal conditions,guaranteeing the reliable operation of LIBs in b...Phase change materials(PCMs)are expected to achieve dual-mode thermal management for heating and cooling Li-ion batteries(LIBs)according to real-time thermal conditions,guaranteeing the reliable operation of LIBs in both cold and hot environments.Herein,we report a liquid metal(LM)modified polyethylene glycol/LM/boron nitride PCM,capable of dual-mode thermal managing the LIBs through photothermal effect and passive thermal conduction.Its geometrical conformation and thermal pathways fabricated through ice-template strategy are conformable to the LIB’s structure and heat-conduction characteristic.Typically,soft and deformable LMs are modified on the boron nitride surface,serving as thermal bridges to reduce the contact thermal resistance among adjacent fillers to realize high thermal conductivity of 8.8 and 7.6 W m^(−1) K^(−1) in the vertical and in-plane directions,respectively.In addition,LM with excellent photothermal performance provides the PCM with efficient battery heating capability if employing a controllable lighting system.As a proof-of-concept,this PCM is manifested to heat battery to an appropriate temperature range in a cold environment and lower the working temperature of the LIBs by more than 10℃ at high charging/discharging rate,opening opportunities for LIBs with durable working performance and evitable risk of thermal runaway.展开更多
In this paper,a model predictive control(MPC)based on back propagation neural network(BPNN)prediction model was proposed for compressor speed control of air conditioning system(ACS)and battery thermal management syste...In this paper,a model predictive control(MPC)based on back propagation neural network(BPNN)prediction model was proposed for compressor speed control of air conditioning system(ACS)and battery thermal management system(BTMS)coupling system of battery electric vehicle(BEV).In order to solve the problem of high cooling energy consumption and inferior thermal comfort in the cabin of the battery electric vehicle thermal management system(BEVTMS)during summer time,this paper combines the respective superiorities of artificial neural network(ANN)predictive modeling and MPC,and creatively combines the two methods and uses them in the control of BEVTMS.Firstly,based on ANN and heat transfer theory,BPNN prediction model,ACS and BTMS coupling system were established and verified.Secondly,a mathematical method of MPC was established to control the speed of the compressor.Then,the state parameters of the coupled system were predicted using a BPNN prediction model,and the predicted values were passed to the MPC,thus achieving accurate control of the compressor speed using the MPC.Finally,the effects of PID control and MPC based on BPNN prediction model on thermal comfort of cabin and compressor energy consumption at different ambient temperatures were compared in simulation under New European Driving Cycle(NEDC)conditions.The results showed for the constructed BPNN prediction model predicted and tested values of the selected parameters the mean squared error(MSE)ranged from 2.498%to 8.969%,mean absolute percentage error(MAPE)ranged from 4.197%to 8.986%,and mean absolute error(MAE)ranged from 3.202%to 8.476%.At ambient temperatures of 25℃,35℃ and 45℃,the MPC based on the BPNN prediction model reduced the cumulative discomfort time in the cabin by 100 s,39 s and 19 s,respectively,compared with the PID control.Under three NEDC conditions,the energy consumption is reduced by 1.82%,2.35%and 3.48%,respectively.When the ambient temperature was 35℃,the MPC based on BPNN prediction model can make the ACS and BTMS coupling system have better thermal comfort,and the energy saving effect of the compressor was more obvious with the temperature.展开更多
As the only power source of pure electric vehicles,the performance of battery packs is easily affected by the temperature,and too high or too low temperature will make the performance of battery packs decline.In this ...As the only power source of pure electric vehicles,the performance of battery packs is easily affected by the temperature,and too high or too low temperature will make the performance of battery packs decline.In this study,the thermal analysis finite element modeling of a cast aluminum battery pack and steel battery pack of a pure electric vehicle is established to compare the thermal insulation performance of two kinds of battery packs under high-and low-temperature conditions.The simulation results show that the thermal insulation performance of the two kinds of battery packs meets the design requirements under high-and low-temperature conditions.The external environment of the cell and battery pack mainly transmits heat through heat conduction.Aiming at the problem that the uniform temperature performance of the steel battery pack is lower than that of the cast aluminum battery pack,several optimization solutions are put forward for the insulation design of the steel battery pack,and the optimal solution is obtained by comparing the simulation results.展开更多
基金financially supported by the National Key Research and Development Program(Grant No.2022YFE0207400)the National Natural Science Foundation of China(Grant No.U22A20168 and 52174225)。
文摘Developing technologies that can be applied simultaneously in battery thermal management(BTM)and thermal runaway(TR)mitigation is significant to improving the safety of lithium-ion battery systems.Inorganic phase change material(PCM)with nonflammability has the potential to achieve this dual function.This study proposed an encapsulated inorganic phase change material(EPCM)with a heat transfer enhancement for battery systems,where Na_(2)HPO_(4)·12H_(2)O was used as the core PCM encapsulated by silica and the additive of carbon nanotube(CNT)was applied to enhance the thermal conductivity.The microstructure and thermal properties of the EPCM/CNT were analyzed by a series of characterization tests.Two different incorporating methods of CNT were compared and the proper CNT adding amount was also studied.After preparation,the battery thermal management performance and TR propagation mitigation effects of EPCM/CNT were further investigated on the battery modules.The experimental results of thermal management tests showed that EPCM/CNT not only slowed down the temperature rising of the module but also improved the temperature uniformity during normal operation.The peak battery temperature decreased from 76℃to 61.2℃at 2 C discharge rate and the temperature difference was controlled below 3℃.Moreover,the results of TR propagation tests demonstrated that nonflammable EPCM/CNT with good heat absorption could work as a TR barrier,which exhibited effective mitigation on TR and TR propagation.The trigger time of three cells was successfully delayed by 129,474 and 551 s,respectively and the propagation intervals were greatly extended as well.
基金supported by the National Natural Science Foundation of China (No.62373224,62333013,and U23A20327)。
文摘With the increasing attention paid to battery technology,the microscopic reaction mechanism and macroscopic heat transfer process of lithium-ion batteries have been further studied and understood from both academic and industrial perspectives.Temperature,as one of the key parameters in the physical fra mework of batteries,affects the performa nce of the multi-physical fields within the battery,a nd its effective control is crucial.Since the heat generation in the battery is determined by the real-time operating conditions,the battery temperature is essentially controlled by the real-time heat dissipation conditions provided by the battery thermal management system.Conventional battery thermal management systems have basic temperature control capabilities for most conventional application scenarios.However,with the current development of la rge-scale,integrated,and intelligent battery technology,the adva ncement of battery thermal management technology will pay more attention to the effective control of battery temperature under sophisticated situations,such as high power and widely varied operating conditions.In this context,this paper presents the latest advances and representative research related to battery thermal management system.Firstly,starting from battery thermal profile,the mechanism of battery heat generation is discussed in detail.Secondly,the static characteristics of the traditional battery thermal management system are summarized.Then,considering the dynamic requirements of battery heat dissipation under complex operating conditions,the concept of adaptive battery thermal management system is proposed based on specific research cases.Finally,the main challenges for battery thermal management system in practice are identified,and potential future developments to overcome these challenges are presented and discussed.
基金supported by the National Natural Science Foundation of China(Grant No.52271320)"Mechanics+"interdisciplinary innovation youth fund project of Ningbo University(LJ2023005).
文摘With the increasing requirements for fast charging and discharging,higher requirements have been put forward for the thermal management of power batteries.Therefore,there is an urgent need to develop efficient heat transfer fluids.As a new type of heat transfer fluids,functional thermal fluids mainly includ-ing nanofluids(NFs)and phase change fluids(PCFs),have the advantages of high heat carrying density,high heat transfer rate,and broad operational temperature range.However,challenges that hinder their practical applications remain.In this paper,we firstly overview the classification,thermophysical prop-erties,drawbacks,and corresponding modifications of functional thermal fluids.For NFs,the high ther-mal conductivity and high convective heat transfer performance were mainly elaborated,while the stability and viscosity issues were also analyzed.And then for PCFs,the high heat carrying density was mainly elaborated,while the problems of supercooling,stability,and viscosity were also analyzed.On this basis,the composite fluids combined NFs and PCFs technology,has been summarized.Furthermore,the thermal properties of traditional fluids,NFs,PCFs,and composite fluids are compared,which proves that functional thermal fluids are a good choice to replace traditional fluids as coolants.Then,battery thermal management system(BTMS)based on functional thermal fluids is summarized in detail,and the thermal management effects and pump consumption are compared with that of water-based BTMS.Finally,the current technical challenges that parameters optimization of functional thermal fluids and structures optimization of BTMS systematically are presented.In the future,it is necessary to pay more attention to using machine learning to predict thermophysical properties of functional thermal fluids and their applications for BTMS under actual vehicle conditions.
基金support provided National Natural Science Foundation of China with Grant No.51976016Natural Science Foundation of Hunan Province,China with Grant No.2020JJ4616Research Foundation of Education Bureau of Hunan Province(18B149).
文摘The serpentine tube liquid cooling and composite PCM coupled cooling thermal management system is designed for 18650 cylindrical power batteries,with the maximum temperature and temperature difference of the power pack within the optimal temperature operating range as the target.The initial analysis of the battery pack at a 5C discharge rate,the influence of the single cell to cooling tube distance,the number of cooling tubes,inlet coolant temperature,the coolant flow rate,and other factors on the heat dissipation performance of the battery pack,initially determined a reasonable value for each design parameter.A control strategy is used to regulate the inlet flow rate and coolant temperature of the liquid cooling system in order to make full use of the latent heat of the composite PCM and reduce the pump’s energy consumption.The simulation results show that the maximum battery pack temperature of 309.8 K and the temperature difference of 4.6 K between individual cells with the control strategy are in the optimal temperature operating range of the power battery,and the utilization rate of the composite PCM is up to 90%.
基金National Natural Science Foundation of China(Nos.61772130 and 62072096)Fundamental Research Funds for the Central Universities+2 种基金China(No.2232020A-12)International Cooperation Program of Shanghai Science and Technology Commission,China(No.20220713000)Young Top-Notch Talent Program in Shanghai,China。
文摘The promotion of electric vehicles(EVs)is restricted due to their short cruising range.It is desirable to design an effective energy management strategy to improve their energy efficiency.Most existing work concerning energy management strategies focused on hybrids rather than the EVs.The work focusing on the energy management strategy for EVs mainly uses the traditional optimization strategies,thereby limiting the advantages of energy economy.To this end,a novel energy management strategy that considered the impact of battery thermal effects was proposed with the help of reinforcement learning.The main idea was to first analyze the energy flow path of EVs,further formulize the energy management as an optimization problem,and finally propose an online strategy based on reinforcement learning to obtain the optimal strategy.Additionally,extensive simulation results have demonstrated that our strategy reduces energy consumption by at least 27.4%compared to the existing methods.
基金Supported by National Natural Science Foundation of China(Grant No.51775193)Guangdong Provincial Science and Technology Planning Project of China(Grant Nos.2014B010125001,2014B010106002,2016A050503021)Guangzhou Municipal Science and Technology Planning Project of China(Grant No.201707020045)
文摘Due to the heat pipes’ transient conduction,phase change and fluid dynamics during cooling/heating with high frequency charging/discharging of batteries,it is crucial to investigate in depth the experimental dynamic thermal characteristics in such complex heat transfer processes for more accurate thermal analysis and design of a BTMS. In this paper,the use of ultra?thin micro heat pipe(UMHP) for thermal management of a lithium?ion battery pack in EVs is explored by experiments to reveal the cooling/heating characteristics of the UMHP pack. The cooling performance is evaluated under di erent constant discharging and transient heat inputs conditions. And the heating e ciency is assessed under several sub?zero temperatures through heating films with/without UMHPs. Results show that the pro?posed UMHP BTMS with forced convection can keep the maximum temperature of the pack below 40 °C under 1 ~ 3 C discharging,and e ectively reduced the instant temperature increases and minimize the temperature fluctuation of the pack during transient federal urban driving schedule(FUDS) road conditions. Experimental data also indicate that heating films stuck on the fins of UMHPs brought about adequate high heating e ciency comparing with that stuck on the surface of cells under the same heating power,but has more convenient maintenance and less cost for the BTMS. The experimental dynamic temperature characteristics of UMHP which is found to be a high?e cient and low?energy consumption cooling/heating method for BTMSs,can be performed to guide thermal analysis and optimiza?tion of heat pipe BTMSs.
基金Project(50803008)supported by the National Natural Science Foundation of ChinaProjects(14JJ4035,2011RS4067)supported by the Natural Science Foundation of Hunan Province,China+1 种基金Project(2013-sdllmd-08)supported by the State Key Laboratory of Luminescent Materials and Devices(South China University of Technology),ChinaProjects(20100480946,201104508)supported by the China Postdoctoral Science Foundation,China
文摘Single cell temperature difference of lithium-ion battery(LIB) module will significantly affect the safety and cycle life of the battery. The reciprocating air-flow module created by a periodic reversal of the air flow was investigated in an effort to mitigate the inherent temperature gradient problem of the conventional battery system with a unidirectional coolant flow with computational fluid dynamics(CFD). Orthogonal experiment and optimization design method based on computational fluid dynamics virtual experiments were developed. A set of optimized design factors for the cooling of reciprocating air flow of LIB thermal management was determined. The simulation experiments show that the reciprocating flow can achieve good heat dissipation, reduce the temperature difference, improve the temperature homogeneity and effectively lower the maximal temperature of the modular battery. The reciprocating flow improves the safety, long-term performance and life span of LIB.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 91834301 and 22078088)the National Natural Science Foundation of China for Innovative Research Groups (Grant No. 51621002)the Shanghai Rising-Star Program (Grant No. 21QA1401900)。
文摘Lithium-ion battery packs are made by many batteries, and the difficulty in heat transfer can cause many safety issues. It is important to evaluate thermal performance of a battery pack in designing process. Here, a multiscale method combining a pseudo-two-dimensional model of individual battery and three-dimensional computational fluid dynamics is employed to describe heat generation and transfer in a battery pack. The effect of battery arrangement on the thermal performance of battery packs is investigated. We discuss the air-cooling effect of the pack with four battery arrangements which include one square arrangement, one stagger arrangement and two trapezoid arrangements. In addition, the air-cooling strategy is studied by observing temperature distribution of the battery pack. It is found that the square arrangement is the structure with the best air-cooling effect, and the cooling effect is best when the cold air inlet is at the top of the battery pack. We hope that this work can provide theoretical guidance for thermal management of lithium-ion battery packs.
基金by the Natural Science Foundation of Jiangsu Province(Grants No.BK20170317).
文摘A comparative numerical study has been conducted on the thermal performance of a heat pipe cooling system considering several influential factors such as the coolant flow rate,the coolant inlet temperature,and the input power.A comparison between numerical data and results available in the literature has demonstrated that our numerical procedure could successfully predict the heat transfer performance of the considered heat pipe cooling system for a battery.Specific indicators such as temperature,heat flux,and pressure loss were extracted to describe the characteristics of such a system.On the basis of the distributions of the temperature ratio of the battery surface,together with the heat flux and the streamlines around the heat pipe condenser,we conclude that the low disturbance of the coolant is the cause of the temperature gradient along the fluid flow direction.
文摘Designing a good energy storage system represents the most important chall</span><span style="font-family:Verdana;">enge for spreading over a large scale of electric mobility. Proper thermal</span> <span style="font-family:Verdana;">management is critical and guarantees optimum working temperature in a</span><span style="font-family:Verdana;"> battery pack. In the various battery thermal management technologies, air cooling is one of the most used solutions. The following work analyzes the cooling performance of the air-cooling thermal management system by choosing appropriate system parameters and analyzes using CFD simulations for accurate thermal modeling. These parameters include the influence of airflow rate </span><span style="font-family:Verdana;">and cell spacing on the configuration. The outcome of the simulations is</span><span style="font-family:Verdana;"> compared using parameters like maximum temperature, and temperature distribution in the battery module to obtain optimum results for further applications. Finally, the simulations of the optimal solution will be compared to experimental results for validation.
基金This work was financially supported by the National Natural Science Foundation of China(No.52103091)the Natural Science Foundation of Jiangsu Province(No.BK20200501)the State Key Laboratory of Polymer Materials Engineering(No.sklpme2022-3-15).
文摘Phase change materials(PCMs)are expected to achieve dual-mode thermal management for heating and cooling Li-ion batteries(LIBs)according to real-time thermal conditions,guaranteeing the reliable operation of LIBs in both cold and hot environments.Herein,we report a liquid metal(LM)modified polyethylene glycol/LM/boron nitride PCM,capable of dual-mode thermal managing the LIBs through photothermal effect and passive thermal conduction.Its geometrical conformation and thermal pathways fabricated through ice-template strategy are conformable to the LIB’s structure and heat-conduction characteristic.Typically,soft and deformable LMs are modified on the boron nitride surface,serving as thermal bridges to reduce the contact thermal resistance among adjacent fillers to realize high thermal conductivity of 8.8 and 7.6 W m^(−1) K^(−1) in the vertical and in-plane directions,respectively.In addition,LM with excellent photothermal performance provides the PCM with efficient battery heating capability if employing a controllable lighting system.As a proof-of-concept,this PCM is manifested to heat battery to an appropriate temperature range in a cold environment and lower the working temperature of the LIBs by more than 10℃ at high charging/discharging rate,opening opportunities for LIBs with durable working performance and evitable risk of thermal runaway.
基金supported by the Natural Science Foundation of Chongqing (Grant No:cstc2021jcyj-msxmX0440)the youth project of science and technology research program of Chongqing Education Commission of China (Grant No:KJQN202301167)+3 种基金the Chongqing Graduate Education Teaching Reform Research Project (Grant No:YJG233120)the Special Major Project of Technological Innovation and Application Development of Chongqing(Grant No:CSTB2022TIAD-STX0002)Chongqing university of technology graduate education quality development action plan funding results-graduate student innovation program (Grant No:gzlcx20232026)the graduate student innovation projects (Grant No:gzlcx20232029)
文摘In this paper,a model predictive control(MPC)based on back propagation neural network(BPNN)prediction model was proposed for compressor speed control of air conditioning system(ACS)and battery thermal management system(BTMS)coupling system of battery electric vehicle(BEV).In order to solve the problem of high cooling energy consumption and inferior thermal comfort in the cabin of the battery electric vehicle thermal management system(BEVTMS)during summer time,this paper combines the respective superiorities of artificial neural network(ANN)predictive modeling and MPC,and creatively combines the two methods and uses them in the control of BEVTMS.Firstly,based on ANN and heat transfer theory,BPNN prediction model,ACS and BTMS coupling system were established and verified.Secondly,a mathematical method of MPC was established to control the speed of the compressor.Then,the state parameters of the coupled system were predicted using a BPNN prediction model,and the predicted values were passed to the MPC,thus achieving accurate control of the compressor speed using the MPC.Finally,the effects of PID control and MPC based on BPNN prediction model on thermal comfort of cabin and compressor energy consumption at different ambient temperatures were compared in simulation under New European Driving Cycle(NEDC)conditions.The results showed for the constructed BPNN prediction model predicted and tested values of the selected parameters the mean squared error(MSE)ranged from 2.498%to 8.969%,mean absolute percentage error(MAPE)ranged from 4.197%to 8.986%,and mean absolute error(MAE)ranged from 3.202%to 8.476%.At ambient temperatures of 25℃,35℃ and 45℃,the MPC based on the BPNN prediction model reduced the cumulative discomfort time in the cabin by 100 s,39 s and 19 s,respectively,compared with the PID control.Under three NEDC conditions,the energy consumption is reduced by 1.82%,2.35%and 3.48%,respectively.When the ambient temperature was 35℃,the MPC based on BPNN prediction model can make the ACS and BTMS coupling system have better thermal comfort,and the energy saving effect of the compressor was more obvious with the temperature.
文摘As the only power source of pure electric vehicles,the performance of battery packs is easily affected by the temperature,and too high or too low temperature will make the performance of battery packs decline.In this study,the thermal analysis finite element modeling of a cast aluminum battery pack and steel battery pack of a pure electric vehicle is established to compare the thermal insulation performance of two kinds of battery packs under high-and low-temperature conditions.The simulation results show that the thermal insulation performance of the two kinds of battery packs meets the design requirements under high-and low-temperature conditions.The external environment of the cell and battery pack mainly transmits heat through heat conduction.Aiming at the problem that the uniform temperature performance of the steel battery pack is lower than that of the cast aluminum battery pack,several optimization solutions are put forward for the insulation design of the steel battery pack,and the optimal solution is obtained by comparing the simulation results.