During range-based self-localization of Wireless Sensor Network (WSN) nodes, the number and placement methods of beacon nodes have a great influence on the accuracy of localization. This paper proves a theorem which d...During range-based self-localization of Wireless Sensor Network (WSN) nodes, the number and placement methods of beacon nodes have a great influence on the accuracy of localization. This paper proves a theorem which describes the relationship between the placement of beacon nodes and whether the node can be located in 3D indoor environment. In fact, as the highest locating accuracy can be acquired when the beacon nodes form one or more equilateral triangles in 2D plane, we generalizes this conclusion to 3D space, and proposes a beacon nodes selection algorithm based on the minimum condition number to get the higher locating accuracy, which can minimize the influence of distance measurement error. Simulation results show that the algorithm is effective and feasible.展开更多
A new distributed node localization algorithm named mobile beacons-improved particle filter (MB-IPF) was proposed. In the algorithm, the mobile nodes equipped with globe position system (GPS) move around in the wi...A new distributed node localization algorithm named mobile beacons-improved particle filter (MB-IPF) was proposed. In the algorithm, the mobile nodes equipped with globe position system (GPS) move around in the wireless sensor network (WSN) field based on the Gauss-Markov mobility model, and periodically broadcast the beacon messages Each unknown node estimates its location in a fully distributed mode based on the received mobile beacons. The localization algorithm is based on the IPF and several refinements, including the proposed weighted centroid algorithm, the residual resampling algorithm, and the markov chain monte carlo (MCMC) method etc., which were also introduced for performance improvement. The simulation results show that our proposed algorithm is efficient for most applications.展开更多
基金Supported by the National Natural Science Foundation of China (No.61003236 61171053)+2 种基金the Doctoral Fund of Ministry of Education of China (No.20113223110002)the Natural Science Major Program for Colleges and Universities in Jiangsu Province (No.11KJA520001)Science & Technology Innovation Fund for higher education institutions of Jiangsu Province (CXZZ12_0481)
文摘During range-based self-localization of Wireless Sensor Network (WSN) nodes, the number and placement methods of beacon nodes have a great influence on the accuracy of localization. This paper proves a theorem which describes the relationship between the placement of beacon nodes and whether the node can be located in 3D indoor environment. In fact, as the highest locating accuracy can be acquired when the beacon nodes form one or more equilateral triangles in 2D plane, we generalizes this conclusion to 3D space, and proposes a beacon nodes selection algorithm based on the minimum condition number to get the higher locating accuracy, which can minimize the influence of distance measurement error. Simulation results show that the algorithm is effective and feasible.
文摘A new distributed node localization algorithm named mobile beacons-improved particle filter (MB-IPF) was proposed. In the algorithm, the mobile nodes equipped with globe position system (GPS) move around in the wireless sensor network (WSN) field based on the Gauss-Markov mobility model, and periodically broadcast the beacon messages Each unknown node estimates its location in a fully distributed mode based on the received mobile beacons. The localization algorithm is based on the IPF and several refinements, including the proposed weighted centroid algorithm, the residual resampling algorithm, and the markov chain monte carlo (MCMC) method etc., which were also introduced for performance improvement. The simulation results show that our proposed algorithm is efficient for most applications.