期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Coin-structured tunable beam shaping assembly design for accelerator-based boron neutron capture therapy for tumors at different depths and sizes 被引量:1
1
作者 Zhao‑Peng Qiao Yao‑Cheng Hu +5 位作者 Quan‑Xu Jiang Jing‑Jing Fan Isao Murata Rui‑Rui Liu Bo Wang Sheng Wang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第12期66-76,共11页
In the past decade,boron neutron capture therapy utilizing an accelerator-based neutron source(ABNS)designed primarily for producing epithermal neutrons has been implemented in the treatment of brain tumors and other ... In the past decade,boron neutron capture therapy utilizing an accelerator-based neutron source(ABNS)designed primarily for producing epithermal neutrons has been implemented in the treatment of brain tumors and other cancers.The specifications for designing an epithermal beam are primarily based on the IAEA-TECODC-1223 report,issued in 2001 for reactor neutron sources.Based on this report,the latest perspectives and clinical requirements,we designed an ABNS capable of adjusting the average neutron beam energy.The design was based on a 2.8 MeV,20 mA proton beam bombarding a lithium target to produce neutrons that were subsequently moderated and tuned through a tunable beam shaping assembly(BSA)which can modify the thicknesses and materials of the coin-shaped moderators,back reflectors,filters,and collimators.The simulation results demonstrated that epithermal neutron beams for deep seated tumor treatment,which were generated by utilizing magnesium fluoride with lengths ranging between 28 and 36 cm as the moderator,possessed a treatment depth of 5.6 cm although the neutron flux peak shifts from 4.5 to 1.0 keV.When utilizing a thinner moderator,a less accelerated beam power can meet the treatment requirements.However,higher powers reduced the treatment time.In contrast,employing a thick moderator can reduce the skin dose.In scenarios that required relatively low energy neutron beams,the removal of the thermal neutron filter can raise the thermal neutron flux at the beam port.And the depth of the dose rate peak could be adjusted between 0.25 and 2.20 cm by combining magnesium fluoride and polyethylene coins of different thicknesses.Hence,this device has a better adaptability for the treatment of superficial tumors.Overall,the tunable BSA provides greater flexibility for clinical treatment than common BSA designs that can only adjust the port size. 展开更多
关键词 Boron neutron capture therapy(BNCT) Accelerator-based neutron source(ABNS) beam shaping assembly(BSA) Treatment depth
下载PDF
Neutron beam optimization based on a ^7Li(p,n)^7Be reaction for treatment of deep-seated brain tumors by BNCT
2
作者 Zahra Ahmadi Ganjeh S.Farhad Masoudi 《Chinese Physics C》 SCIE CAS CSCD 2014年第10期131-136,共6页
Neutron beam optimization for accelerator-based Boron Neutron Capture Therapy(BNCT) is investigated using a ^7Li(p,n)^7Be reaction. Design and optimization have been carried out for the target, cooling system,mode... Neutron beam optimization for accelerator-based Boron Neutron Capture Therapy(BNCT) is investigated using a ^7Li(p,n)^7Be reaction. Design and optimization have been carried out for the target, cooling system,moderator, filter, reflector, and collimator to achieve a high flux of epithermal neutron and satisfy the IAEA criteria.Also, the performance of the designed beam in tissue is assessed by using a simulated Snyder head phantom. The results show that the optimization of the collimator and reflector is critical to finding the best neutron beam based on the ^7Li(p,n)^7Be reaction. Our designed beam has 2.49×109n/cm^2 s epithermal neutron flux and is suitable for BNCT of deep-seated brain tumors. 展开更多
关键词 BNCT target design ^7Li(p n)^7Be reaction beam shaping assembly DOSIMETRY
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部