Gaussian beam expansion based on the aperture field distribution is studied systematically in this paper. The beam series representation for a radiated field and its asymptotic form are derived and applied to aperture...Gaussian beam expansion based on the aperture field distribution is studied systematically in this paper. The beam series representation for a radiated field and its asymptotic form are derived and applied to aperture analysis. Numerical results indicate that this method is able to analyze the radiated field accurately in all zones.展开更多
The process of electron beam vacuum deposition of the Fe-(35-38 wt%)Ni alloys at substrate temperatures Ts from 300 to700 ℃ were used to produce vacuum-deposited foils with the FCC structure, differing by the size ...The process of electron beam vacuum deposition of the Fe-(35-38 wt%)Ni alloys at substrate temperatures Ts from 300 to700 ℃ were used to produce vacuum-deposited foils with the FCC structure, differing by the size of characteristic microstructural elements (grains and subgrains). It was shown that refinement of foil microstructural elements to nanoscale is accompanied by their microhardness increase up to 4-5 GPa. The change of the thermal expansion coefficient (TEC) of the nanostructured (NS) foil of the Fe-35.1Ni alloy within the temperature range from -50 to 150 ℃ has some deviation from that observed for cast Invar alloy of the same composition. It has been found that the main factors affecting the peculiarities of thermal expansion of the NS foil can be related to the presence of small fraction of BCC- phase in them, high level of crystalline lattice microstrains and inhomogeneous magnetic order in FCC- phase. It was shown that as a result of additional thermal treatment of NS foils their invar properties become similar to that observed for cast Invar alloy but mechanical properties remain on the same level.展开更多
文摘Gaussian beam expansion based on the aperture field distribution is studied systematically in this paper. The beam series representation for a radiated field and its asymptotic form are derived and applied to aperture analysis. Numerical results indicate that this method is able to analyze the radiated field accurately in all zones.
基金the financing support of the budget(022/11-B)of the G.V.Kurdyumov Institute for Metal Physics of NAS of Ukrainethe budget(1.6.3.13/33) of the E.O.Paton Electric Welding Institute of NAS of Ukraine
文摘The process of electron beam vacuum deposition of the Fe-(35-38 wt%)Ni alloys at substrate temperatures Ts from 300 to700 ℃ were used to produce vacuum-deposited foils with the FCC structure, differing by the size of characteristic microstructural elements (grains and subgrains). It was shown that refinement of foil microstructural elements to nanoscale is accompanied by their microhardness increase up to 4-5 GPa. The change of the thermal expansion coefficient (TEC) of the nanostructured (NS) foil of the Fe-35.1Ni alloy within the temperature range from -50 to 150 ℃ has some deviation from that observed for cast Invar alloy of the same composition. It has been found that the main factors affecting the peculiarities of thermal expansion of the NS foil can be related to the presence of small fraction of BCC- phase in them, high level of crystalline lattice microstrains and inhomogeneous magnetic order in FCC- phase. It was shown that as a result of additional thermal treatment of NS foils their invar properties become similar to that observed for cast Invar alloy but mechanical properties remain on the same level.