The intensity distribution in the focal region of a high-NA lens for the incident azimuthally polarized multi Gaussian beam transmitted through a multi belt spiral phase hologram is studied on the basis of the vector ...The intensity distribution in the focal region of a high-NA lens for the incident azimuthally polarized multi Gaussian beam transmitted through a multi belt spiral phase hologram is studied on the basis of the vector diffraction theory. Here we report a new method used to generate a needle of transversely polarized light beam with sub diffraction beam size of 0.366A that propagates without divergence over a long distance of about 22A in free space. We also expect that such a light needle of transversely polarized beam may find its applications in utilizing optical materials or instruments responsive to the transversal field only.展开更多
Based on the vector diffraction theory, a super-resolution longitudinally polarized optical needle with ultra-long depth of focus(DOF) is generated by tightly focusing a radially polarized beam that is modulated by a ...Based on the vector diffraction theory, a super-resolution longitudinally polarized optical needle with ultra-long depth of focus(DOF) is generated by tightly focusing a radially polarized beam that is modulated by a self-designed ternary hybrid(phase/amplitude) filter(THF). Both the phase and the amplitude patterns of THF are judiciously optimized by the versatile particle swarm optimization(PSO) searching algorithm. For the focusing configuration with a combination of a high numerical aperture(NA) and the optimized sine-shaped THFs, an optical needle with the full width at half maximum(FWHM) of 0.414λ and the DOF of 7.58λ is accessed, which corresponds to an aspect ratio of 18.3. The demonstrated longitudinally polarized super-resolution light needle with high aspect ratio opens up broad applications in high-density optical data storage, nano-photolithography, super-resolution imaging and high-efficiency particle trapping.展开更多
文摘The intensity distribution in the focal region of a high-NA lens for the incident azimuthally polarized multi Gaussian beam transmitted through a multi belt spiral phase hologram is studied on the basis of the vector diffraction theory. Here we report a new method used to generate a needle of transversely polarized light beam with sub diffraction beam size of 0.366A that propagates without divergence over a long distance of about 22A in free space. We also expect that such a light needle of transversely polarized beam may find its applications in utilizing optical materials or instruments responsive to the transversal field only.
基金supported by the National Natural Science Foundation of China(Nos.61575139,61605136,51602213 and 11604236)the Youth Foundation of the Taiyuan University of Technology(No.2015QN066)
文摘Based on the vector diffraction theory, a super-resolution longitudinally polarized optical needle with ultra-long depth of focus(DOF) is generated by tightly focusing a radially polarized beam that is modulated by a self-designed ternary hybrid(phase/amplitude) filter(THF). Both the phase and the amplitude patterns of THF are judiciously optimized by the versatile particle swarm optimization(PSO) searching algorithm. For the focusing configuration with a combination of a high numerical aperture(NA) and the optimized sine-shaped THFs, an optical needle with the full width at half maximum(FWHM) of 0.414λ and the DOF of 7.58λ is accessed, which corresponds to an aspect ratio of 18.3. The demonstrated longitudinally polarized super-resolution light needle with high aspect ratio opens up broad applications in high-density optical data storage, nano-photolithography, super-resolution imaging and high-efficiency particle trapping.