In this paper,the slow orbit feedback system of HLS,including the feedback principle,the hardware,the software and the main operation results,is briefly introduced.With the help of slow orbit feedback system,the verti...In this paper,the slow orbit feedback system of HLS,including the feedback principle,the hardware,the software and the main operation results,is briefly introduced.With the help of slow orbit feedback system,the vertical orbit stability of HLS is better than 30 microns,which meets the requirement of synchrotron radiation users and is comparable with the international advanced level of orbit stability in the same kind of machines.展开更多
Based on the Hermite–Gaussian expansion of the Lorentz distribution and the complex Gaussian expansion of the aperture function, an analytical expression of the Lorentz–Gauss vortex beam with one topological charge ...Based on the Hermite–Gaussian expansion of the Lorentz distribution and the complex Gaussian expansion of the aperture function, an analytical expression of the Lorentz–Gauss vortex beam with one topological charge passing through a single slit is derived. By using the obtained analytical expressions, the properties of the Lorentz–Gauss vortex beam passing through a single slit are numerically demonstrated. According to the intensity distribution or the phase distribution of the Lorentz–Gauss vortex beam, one can judge whether the topological charge is positive or negative. The effects of the topological charge and three beam parameters on the orbital angular momentum density as well as the spiral spectra are systematically investigated respectively. The optimal choice for measuring the topological charge of the diffracted Lorentz–Gauss vortex beam is to make the single slit width wider than the waist of the Gaussian part.展开更多
The light's orbital angular momentum (OAM) is a consequence of the spiral flow of the electromagnetic energy. In this paper, an analysis of light beams with OAM used for free space optics (FSO) is conducted. The ...The light's orbital angular momentum (OAM) is a consequence of the spiral flow of the electromagnetic energy. In this paper, an analysis of light beams with OAM used for free space optics (FSO) is conducted. The basic description and conception of light's OAM are reviewed. Both encoding information into OAM states of single light beam and encoding information into spatial structure of the mixed optical vortex with OAM are discussed, and feasibility to improve the FSO's performance of security and obstruction of line of sight is examined.展开更多
The focusing and the stable transport of an intense elliptic sheet electron beam in a uniform magnetic field are investigated thoroughly by using the macroscopic cold-fluid model and the single-particle orbit theory.T...The focusing and the stable transport of an intense elliptic sheet electron beam in a uniform magnetic field are investigated thoroughly by using the macroscopic cold-fluid model and the single-particle orbit theory.The results indicate that the envelopes and the tilted angles of the sheet electron beam obtained by the two theories are consistent.The single-particle orbit theory is more accurate due to its treatment of the space-charge fields in a rectangular drift tube.The macroscopic cold-fluid model describes the collective transport process in order to provide detailed information about the beam dynamics,such as beam shape,density,and velocity profile.The tilt of the elliptic sheet beam in a uniform magnetic field is carefully studied and demonstrated.The results presented in this paper provide two complete theories for systemically discussing the transport of the sheet beam and are useful for understanding and guiding the practical engineering design of electron optics systems in high power vacuum electronic devices.展开更多
This paper investigates a new vortex wave imaging approach to improve the imaging quality of small metal targets of size less than 1.5 mm.Antennas with different spiral phase plates are designed to efficiently transmi...This paper investigates a new vortex wave imaging approach to improve the imaging quality of small metal targets of size less than 1.5 mm.Antennas with different spiral phase plates are designed to efficiently transmit vortex beams with orbital angular momentums(OAMs).By analyzing the OAM spectrum of the target,it was discovered that the predominant reflection contains a particular OAM mode that carries abundant azimuthal information.This can be explained by the OAM selectivity of the target and the guidance of the vortex transmitting beam.A simple reflection vortex imaging system was designed to capture the phase information.Measurement results show that the high image contrast reaches 14.9%,which is twice as high as that of the imaging without OAM.Both of simulations and experiments demonstrate that the vortex phase imaging approach proposed in this paper can effectively improve the imaging quality at 80 GHz.This approach is suitable for other millimeter wave imaging systems and is helpful to improve the resolution in anti-terrorism security checks.展开更多
文摘In this paper,the slow orbit feedback system of HLS,including the feedback principle,the hardware,the software and the main operation results,is briefly introduced.With the help of slow orbit feedback system,the vertical orbit stability of HLS is better than 30 microns,which meets the requirement of synchrotron radiation users and is comparable with the international advanced level of orbit stability in the same kind of machines.
基金Project supported by the National Natural Science Foundation of China(Grant No.11574272)Zhejiang Provincial Natural Science Foundation of China(Grant No.LY16A040014)
文摘Based on the Hermite–Gaussian expansion of the Lorentz distribution and the complex Gaussian expansion of the aperture function, an analytical expression of the Lorentz–Gauss vortex beam with one topological charge passing through a single slit is derived. By using the obtained analytical expressions, the properties of the Lorentz–Gauss vortex beam passing through a single slit are numerically demonstrated. According to the intensity distribution or the phase distribution of the Lorentz–Gauss vortex beam, one can judge whether the topological charge is positive or negative. The effects of the topological charge and three beam parameters on the orbital angular momentum density as well as the spiral spectra are systematically investigated respectively. The optimal choice for measuring the topological charge of the diffracted Lorentz–Gauss vortex beam is to make the single slit width wider than the waist of the Gaussian part.
文摘The light's orbital angular momentum (OAM) is a consequence of the spiral flow of the electromagnetic energy. In this paper, an analysis of light beams with OAM used for free space optics (FSO) is conducted. The basic description and conception of light's OAM are reviewed. Both encoding information into OAM states of single light beam and encoding information into spatial structure of the mixed optical vortex with OAM are discussed, and feasibility to improve the FSO's performance of security and obstruction of line of sight is examined.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60501019,10775139 and 60971073)
文摘The focusing and the stable transport of an intense elliptic sheet electron beam in a uniform magnetic field are investigated thoroughly by using the macroscopic cold-fluid model and the single-particle orbit theory.The results indicate that the envelopes and the tilted angles of the sheet electron beam obtained by the two theories are consistent.The single-particle orbit theory is more accurate due to its treatment of the space-charge fields in a rectangular drift tube.The macroscopic cold-fluid model describes the collective transport process in order to provide detailed information about the beam dynamics,such as beam shape,density,and velocity profile.The tilt of the elliptic sheet beam in a uniform magnetic field is carefully studied and demonstrated.The results presented in this paper provide two complete theories for systemically discussing the transport of the sheet beam and are useful for understanding and guiding the practical engineering design of electron optics systems in high power vacuum electronic devices.
基金Science,Technology and Innovation Project of Xiongan New Area (Grant No.2022XAGG0181)LiaoNing Revitalization Talents Program (Grant No.XLYC2007074)+1 种基金Shenyang Young and Middle-aged Science and Technology Innovation Talent Support Program (Grant No.RC220523)Natural Science Foundation of Liaoning Province of China (Grant Nos.2022-YGJC-03 and 2022-MS-034)to provide fund for conducting experiments。
文摘This paper investigates a new vortex wave imaging approach to improve the imaging quality of small metal targets of size less than 1.5 mm.Antennas with different spiral phase plates are designed to efficiently transmit vortex beams with orbital angular momentums(OAMs).By analyzing the OAM spectrum of the target,it was discovered that the predominant reflection contains a particular OAM mode that carries abundant azimuthal information.This can be explained by the OAM selectivity of the target and the guidance of the vortex transmitting beam.A simple reflection vortex imaging system was designed to capture the phase information.Measurement results show that the high image contrast reaches 14.9%,which is twice as high as that of the imaging without OAM.Both of simulations and experiments demonstrate that the vortex phase imaging approach proposed in this paper can effectively improve the imaging quality at 80 GHz.This approach is suitable for other millimeter wave imaging systems and is helpful to improve the resolution in anti-terrorism security checks.