Because the load of the oil beam pumping unit driven by pure electric motor changes sharply during operation,the power of the driving motor does not match and the energy efficiency is low.In this paper,a new type of w...Because the load of the oil beam pumping unit driven by pure electric motor changes sharply during operation,the power of the driving motor does not match and the energy efficiency is low.In this paper,a new type of wind-driven hydro-motor hybrid power system is proposed.The motor and the hydraulic motor are jointly driven,and the energy is recovered by a hydraulic pump with controllable displacement,so that the speed of the driving motor is relatively stable.In order to control the fan speed and keep up with the drastic changes of the outside wind speed,a control strategy of hybrid power system based on wind speed feed-forward compensation is proposed.Through simulation and experimental results,the following conclusions can be drawn:to begin with,the mathematic model is proved to be effective;next,simulation studies show that the proposed feed-forward control method can improve the response rate as well as reduce the response lag.This research can be a reference for the application of the feed-forward control method on the hybrid power system of beam pumping unit.system.展开更多
基金This project was supported by the Science Research Foundation of Inner Mongolia University for the nationalities grant no.NMDGP1704 the Inner Mongolia nature Science Foundation(grant no.2016MS0622)National nature Science Foundation grant no.51865046Science and technology innovation leading project of Inner Mongolia grant no.KCBJ2018028。
文摘Because the load of the oil beam pumping unit driven by pure electric motor changes sharply during operation,the power of the driving motor does not match and the energy efficiency is low.In this paper,a new type of wind-driven hydro-motor hybrid power system is proposed.The motor and the hydraulic motor are jointly driven,and the energy is recovered by a hydraulic pump with controllable displacement,so that the speed of the driving motor is relatively stable.In order to control the fan speed and keep up with the drastic changes of the outside wind speed,a control strategy of hybrid power system based on wind speed feed-forward compensation is proposed.Through simulation and experimental results,the following conclusions can be drawn:to begin with,the mathematic model is proved to be effective;next,simulation studies show that the proposed feed-forward control method can improve the response rate as well as reduce the response lag.This research can be a reference for the application of the feed-forward control method on the hybrid power system of beam pumping unit.system.