There are several design equations available for calculating the torsional compliance and the maximum torsion stress of a rectangular cross-section beam, but most depend on the relative magnitude of the two dimensions...There are several design equations available for calculating the torsional compliance and the maximum torsion stress of a rectangular cross-section beam, but most depend on the relative magnitude of the two dimensions of the crosssection(i.e., the thickness and the width). After reviewing the available equations, two thickness-to-width ratio Independent equations that are symmetric with respect to the two dimensions are obtained for evaluating the maximum torsion stress of rectangular cross-section beams. Based on the resulting equations, outside lamina emergent torsional joints are analyzed and some useful design Insights are obtained. These equations, together with the previous work on symmetric equations for calculating torsional compliance, provide a convenient and effective way for designing and optimizing torsional beams in compliant mechanisms.展开更多
This paper studies numerically the thermo-mechanical effects of ZrO2 thermal barrier coatings (TBCs) irradiated by a high-intensity pulsed ion beam in consideration of the surface structure. Taking the deposited ene...This paper studies numerically the thermo-mechanical effects of ZrO2 thermal barrier coatings (TBCs) irradiated by a high-intensity pulsed ion beam in consideration of the surface structure. Taking the deposited energy of ion beams in TBCs as the source term in the thermal conduction equation, the distribution of temperature in TBCs was simulated. Then, based on the distribution, the evolution of thermal stress was calculated by the finite element method. The results show that tensile radial stress formed at the valley of TBC surfaces after irradiation by HIPIB. Therefore, if cracks happen, they must be at valleys instead of peaks. As for the stress waves, no matter whether through peak or valley position, tensile and compressive stresses are present alternately inside TBCs along the depth direction, and the strength of stress decreases with time.展开更多
Zonal heat treatment(ZHT) was conducted in situ to 14.5 mm-thick TC4 alloy plates by means of defocused electron beam after welding. The effects of ZHT on residual stresses,microstructures and mechanical properties of...Zonal heat treatment(ZHT) was conducted in situ to 14.5 mm-thick TC4 alloy plates by means of defocused electron beam after welding. The effects of ZHT on residual stresses,microstructures and mechanical properties of electron beam welded joints were investigated. Experimental results show residual stresses after welding are mostly relieved through ZHT,and the maximum values of longitudinal tensile stress and transverse compressive stress reduce by 76% and 65%,respectively. The tensile strength and ductility of welded joint after ZHT at slow scanning velocity are improved because of the reduction of residual stress and the microstructural changes of the base and weld metal. ZHT at fast scanning velocity is detrimental to the ductility of welded joint,which is resulted from insufficiently coarsened alpha phase in the fusion zone and the appearance of martensite in the base metal.展开更多
Based on Hartmann-Shack sensor technique, an online thin film stress measuring system was introduced to measure the film stresses of TiO2 and SiO2, and comparison was made between the film stresses prepared respective...Based on Hartmann-Shack sensor technique, an online thin film stress measuring system was introduced to measure the film stresses of TiO2 and SiO2, and comparison was made between the film stresses prepared respectively by the conventional process and the ion-beam assisted deposition. The effect of ion-beam assisted deposition on the film stresses of TiO2 and SiO2 was investigated in details, and the stress control methodologies using on-line adjustment and film doping were put forward. The results show that the film stress value of TiO2 prepared by ion-beam assisted deposition is 40 MPa lower than that prepared by conventional process, and the stress of TiO2 film changes gradually from tensile stress into compressive stress with increasing ion energy; while the film stress of SiO2 is a tensile stress under ion-beam assisted deposition because of the ion-beam sputtering effect, and the film refractive index decreases with increasing ion energy. A dynamic film stress control can be achieved through in-situ adjustment of the processing parameters based on the online film stress measuring technique, and the intrinsic stress of film can be effectively changed through film doping.展开更多
A full-range nonlinear analysis method for fatigue damage in prestressed concrete beams is presented. New damage accumulation models are proposed to describe the fatigue damage evolution in concrete and reinforcement ...A full-range nonlinear analysis method for fatigue damage in prestressed concrete beams is presented. New damage accumulation models are proposed to describe the fatigue damage evolution in concrete and reinforcement respectively. Based on the stress analysis for cross section, the stress redistrbution in the fatigue damage process, due to the different damage mechanisms of concrete and reinforcement, is considered. The nonlinear damage analysis is achieved by means of piecewise linearity, and it is applicable on the condition of repeated loadings with variable amplitude. Fatigue damage modeling of a beam is implemented to illustrate that the proposed method can preferably fit the experimental results.展开更多
The newly proposed element energy projection(EEP) method has been applied to the computation of super_convergent nodal stresses of Timoshenko beam elements.General formulas based on element projection theorem were der...The newly proposed element energy projection(EEP) method has been applied to the computation of super_convergent nodal stresses of Timoshenko beam elements.General formulas based on element projection theorem were derived and illustrative numerical examples using two typical elements were given.Both the analysis and examples show that EEP method also works very well for the problems with vector function solutions.The EEP method gives super_convergent nodal stresses,which are well comparable to the nodal displacements in terms of both convergence rate and error magnitude.And in addition,it can overcome the “shear locking” difficulty for stresses even when the displacements are badly affected.This research paves the way for application of the EEP method to general one_dimensional systems of ordinary differential equations.展开更多
The residual stresses distribution of 7075 aluminum alloy in vacuum electron beam welding joint was numerically simulated using nonlinear finite element method. The result shows that the longitudinal residual stress i...The residual stresses distribution of 7075 aluminum alloy in vacuum electron beam welding joint was numerically simulated using nonlinear finite element method. The result shows that the longitudinal residual stress is tension stress along weld center and the stress peak value appears in the middle of the welded seam; the transversal residual stress is compression stress ; the residual stress in thickness direction is very small.展开更多
Starling from Novozhilov's nonlinear equations of elasticity by appropriate simplification and integration over the beam cross-section, a linearized set of equations for a transversely isotropic beam under initial...Starling from Novozhilov's nonlinear equations of elasticity by appropriate simplification and integration over the beam cross-section, a linearized set of equations for a transversely isotropic beam under initial non-uniform state of stress is obtained. In the absence of initial stress, the obtained equations are reduced to well-known Timoshenko beam equations.These equations are applied to investigate the vibration and buckling characteristics of a transversely isotropic beam under uniform initial axial force and bending moment.展开更多
A series of experiments was carried out so as to elucidate the effect of the phase transformation in the cooling process on welding distortion and residual stress generated by laser beam welding (LBW) and laser-arc hy...A series of experiments was carried out so as to elucidate the effect of the phase transformation in the cooling process on welding distortion and residual stress generated by laser beam welding (LBW) and laser-arc hybrid welding (HYBW) on the high strength steel (HT780). Then, the experiments were simulated by 3D thermal elasticplastic analysis with FEM (Finite Element Method) which was performed with using the idealized mechanical properties considering the transformation superplasticity. From the results, the effects of the phase transformation on welding distortion and residual stress generated by LBW and HYBW were elucidated. Furthermore, the generality of the idealization of the mechanical properties was verified.展开更多
Owing to the absence of proper analytical solution of cantilever beams for couple stress/strain gradient elasto-plastic theory, experimental studies of the cantilever beam in the micro-scale are not suitable for the d...Owing to the absence of proper analytical solution of cantilever beams for couple stress/strain gradient elasto-plastic theory, experimental studies of the cantilever beam in the micro-scale are not suitable for the determination of material length-scale. Based on the couple stress elasto-plasticity, an analytical solution of thin cantilever beams is firstly presented, and the solution can be regarded as an extension of the elastic and rigid-plastic solutions of pure bending beam. A comparison with numerical results shows that the current analytical solution is reliable for the case of σ0 〈〈 H 〈〈 E, where σ0 is the initial yield strength, H is the hardening modulus and E is the elastic modulus. Fortunately, the above mentioned condition can be satisfied for many metal materials, and thus the solution can be used to determine the material length-scale of micro-structures in conjunction with the experiment of cantilever beams in the micro-scale.展开更多
The materials with different moduli in tension and compression are called bi-modulus materials. Graphene is such a kind of materials with the highest strength and the thinnest thickness. In this paper, the mechanical ...The materials with different moduli in tension and compression are called bi-modulus materials. Graphene is such a kind of materials with the highest strength and the thinnest thickness. In this paper, the mechanical response of the bi-modulus beam subjected to the temperature effect and placed on the Winkler foundation is studied. The differential equations about the neutral axis position and undetermined parameters of the normal strain of the bi-modulus foundation beam are established. Then, the analytical expressions of the normal stress, bending moment, and displacement of the foundation beam are derived. Simultaneously, a calculation procedure based on the finite element method (FEM) is developed to obtain the temperature stress of the bi-modulus struc- tures. It is shown that the obtained bi-modulus solutions can recover the classical modulus solution, and the results obtained by the analytical expressions, the present FEM proce- dure, and the traditional FEM software are consistent, which verifies the accuracy and reliability of the present analytical model and procedure. Finally, the difference between the bi-modulus results and the classical same modulus results is discussed, and several reasonable suggestions for calculating and optimizing the certain bi-modulus member in practical engineering are presented.展开更多
A three-dimensional finite-element model (FEM) used for calculating electron beam (EB) welding temperature and stresses fields of thin plates of BT20 titanium has been developed in which the nonlinear thermophysical a...A three-dimensional finite-element model (FEM) used for calculating electron beam (EB) welding temperature and stresses fields of thin plates of BT20 titanium has been developed in which the nonlinear thermophysical and thermo-mechanical properties of the material has been considered. The welding temperature field, the distributions of residual stresses in as-welded (AW) and electron beam local post-weld heat treatment (EBLPWHT) conditions have been successfully simulated. The results show that: (1) In the weld center, the maximum magnitude of residual tensile stresses of BT20 thin plates of Ti alloy is equal to 60%- 70% of its yield strength σs. (2) The residual tensile stresses in weld center can be even decreased after EBLPWHT and the longitudinal tensile stresses are decreased about 50% compared to joints in AW conditions. (3) The numerical calculating results of residual stresses by using FEM are basically in agreement with the experimental results. Combined with numerical calculating results, the effects of electron beam welding and EBLPWHT on the distribution of welding residual stresses in thin plates of BT20 have been analyzed in detail.展开更多
Effects of tie beam length, width and overlap stress on settlement of foundations have been investigated. In this investigation square concrete footings have been used with dimensions (B × B × d) where (d) i...Effects of tie beam length, width and overlap stress on settlement of foundations have been investigated. In this investigation square concrete footings have been used with dimensions (B × B × d) where (d) is footing depth and (B) is footing width (1, 1.5,2 m). Width of tie beam (b) has been taken equal to 0.25, 0.30, 0.40, 0.50 and 0.75 (m). Tie beam length (L) has been taken varying from B till 3B with same footing depth = 0.50 m. Effect of overlap stress on settlement as well as effect of tie beam width and length on settlement has been determined. Also, the efficiency of tie beam length and width has been obtained. An equation is presented to compute the overlap stress zone in case of existing tie beam. It is found that the settlement increases with increasing the length of tie beam which is clear after the effect of the overlap stresses zone. The width of overlap stress zone case of existing tie beam has been found to be equal to (1.6 -1.75) B. The settlement of footings decreases with increasing tie beam width. It is found that the settlement after the effect of the overlap stress zone increases with increasing the length of tie beam.展开更多
Based on thermal-elasto-plastic finite element theory, a two-dimensional finite element model for calculating electron beam brazing temperature and residual stress fields of stainless steel radiator are presented. The...Based on thermal-elasto-plastic finite element theory, a two-dimensional finite element model for calculating electron beam brazing temperature and residual stress fields of stainless steel radiator are presented. The distributions of temperature and residual stress are studied. The resuhs showed that temperature distribution on brazing surface is rather uniform, ranging from 1 026 ℃ to 1 090 ℃. The residual stresses are varied from initial compressive to tensile , and the variation of residual stress is very little in total zone of brazing surface.展开更多
Through the experiments of 7 T-section composite beams, steel fiber reinforced self-stressing concrete (SFRSC) as the composite beam in the composite layer was studied under the hogging bending. The tests simulated ...Through the experiments of 7 T-section composite beams, steel fiber reinforced self-stressing concrete (SFRSC) as the composite beam in the composite layer was studied under the hogging bending. The tests simulated composite layer tensile strain under the hogging bending of inverted loading composite beams, giving the relationship under the different fatigue stress ratios between fatigue cycles and steel bar’s stress range, crack width, stiffness loss and damage, etc., in composite layer. This article established fatigue life equation, and analyzed SFRSC reinforced mechanism to crack width and stiffness loss. The results show that SFRSC as the composite beam concrete has excellent properties of crack resistance and tensile, can reinforce the fatigue crack width and stiffness loss of composite beams, and improve the durability and in normal use of composite beams in the hogging bending zone.展开更多
The distributions of temperature and residual stresses in thin plates of BT20titanium alloy are numerically analyzed by three-dimensional finite element software duringelectron beam welding and electron beam local pos...The distributions of temperature and residual stresses in thin plates of BT20titanium alloy are numerically analyzed by three-dimensional finite element software duringelectron beam welding and electron beam local post-weld heat treatment (EBLPWHT). Combined withnumerical calculating results, the effects of different EBLPWHT mode and parameters, including heattreating position, heating width and heating time, on the distribution of welding residual stressesare analyzed. The results show that, the residual tensile stresses in weld center can be largelydecreased when the weld is heat treated at back preface of the plate. The numerical results alsoindicated that the magnitude of the residual longitudinal stresses of the weld and the zone vicinityof the weld is decreased, and the range of the residual longitudinal stresses is increased alongwith the increase of heating width and heating time.展开更多
基金Supported by National Science Foundation Research of the United States (Grant No.1663345)National Natural Science Foundation of China(Grant No.51675396)Fundamental Research Fund for the Central Universities(Grant No.12K5051204021)
文摘There are several design equations available for calculating the torsional compliance and the maximum torsion stress of a rectangular cross-section beam, but most depend on the relative magnitude of the two dimensions of the crosssection(i.e., the thickness and the width). After reviewing the available equations, two thickness-to-width ratio Independent equations that are symmetric with respect to the two dimensions are obtained for evaluating the maximum torsion stress of rectangular cross-section beams. Based on the resulting equations, outside lamina emergent torsional joints are analyzed and some useful design Insights are obtained. These equations, together with the previous work on symmetric equations for calculating torsional compliance, provide a convenient and effective way for designing and optimizing torsional beams in compliant mechanisms.
基金Project supported by the National Natural Science Foundation of China (Grant No 50575037)the Doctoral Foundation of Dalian University of China (Grant No SBQ200810)
文摘This paper studies numerically the thermo-mechanical effects of ZrO2 thermal barrier coatings (TBCs) irradiated by a high-intensity pulsed ion beam in consideration of the surface structure. Taking the deposited energy of ion beams in TBCs as the source term in the thermal conduction equation, the distribution of temperature in TBCs was simulated. Then, based on the distribution, the evolution of thermal stress was calculated by the finite element method. The results show that tensile radial stress formed at the valley of TBC surfaces after irradiation by HIPIB. Therefore, if cracks happen, they must be at valleys instead of peaks. As for the stress waves, no matter whether through peak or valley position, tensile and compressive stresses are present alternately inside TBCs along the depth direction, and the strength of stress decreases with time.
文摘Zonal heat treatment(ZHT) was conducted in situ to 14.5 mm-thick TC4 alloy plates by means of defocused electron beam after welding. The effects of ZHT on residual stresses,microstructures and mechanical properties of electron beam welded joints were investigated. Experimental results show residual stresses after welding are mostly relieved through ZHT,and the maximum values of longitudinal tensile stress and transverse compressive stress reduce by 76% and 65%,respectively. The tensile strength and ductility of welded joint after ZHT at slow scanning velocity are improved because of the reduction of residual stress and the microstructural changes of the base and weld metal. ZHT at fast scanning velocity is detrimental to the ductility of welded joint,which is resulted from insufficiently coarsened alpha phase in the fusion zone and the appearance of martensite in the base metal.
文摘Based on Hartmann-Shack sensor technique, an online thin film stress measuring system was introduced to measure the film stresses of TiO2 and SiO2, and comparison was made between the film stresses prepared respectively by the conventional process and the ion-beam assisted deposition. The effect of ion-beam assisted deposition on the film stresses of TiO2 and SiO2 was investigated in details, and the stress control methodologies using on-line adjustment and film doping were put forward. The results show that the film stress value of TiO2 prepared by ion-beam assisted deposition is 40 MPa lower than that prepared by conventional process, and the stress of TiO2 film changes gradually from tensile stress into compressive stress with increasing ion energy; while the film stress of SiO2 is a tensile stress under ion-beam assisted deposition because of the ion-beam sputtering effect, and the film refractive index decreases with increasing ion energy. A dynamic film stress control can be achieved through in-situ adjustment of the processing parameters based on the online film stress measuring technique, and the intrinsic stress of film can be effectively changed through film doping.
文摘A full-range nonlinear analysis method for fatigue damage in prestressed concrete beams is presented. New damage accumulation models are proposed to describe the fatigue damage evolution in concrete and reinforcement respectively. Based on the stress analysis for cross section, the stress redistrbution in the fatigue damage process, due to the different damage mechanisms of concrete and reinforcement, is considered. The nonlinear damage analysis is achieved by means of piecewise linearity, and it is applicable on the condition of repeated loadings with variable amplitude. Fatigue damage modeling of a beam is implemented to illustrate that the proposed method can preferably fit the experimental results.
文摘The newly proposed element energy projection(EEP) method has been applied to the computation of super_convergent nodal stresses of Timoshenko beam elements.General formulas based on element projection theorem were derived and illustrative numerical examples using two typical elements were given.Both the analysis and examples show that EEP method also works very well for the problems with vector function solutions.The EEP method gives super_convergent nodal stresses,which are well comparable to the nodal displacements in terms of both convergence rate and error magnitude.And in addition,it can overcome the “shear locking” difficulty for stresses even when the displacements are badly affected.This research paves the way for application of the EEP method to general one_dimensional systems of ordinary differential equations.
基金The project is supported by the Found of Key Fields Project of Inner Mongolia Education Department (No ZL02021)
文摘The residual stresses distribution of 7075 aluminum alloy in vacuum electron beam welding joint was numerically simulated using nonlinear finite element method. The result shows that the longitudinal residual stress is tension stress along weld center and the stress peak value appears in the middle of the welded seam; the transversal residual stress is compression stress ; the residual stress in thickness direction is very small.
文摘Starling from Novozhilov's nonlinear equations of elasticity by appropriate simplification and integration over the beam cross-section, a linearized set of equations for a transversely isotropic beam under initial non-uniform state of stress is obtained. In the absence of initial stress, the obtained equations are reduced to well-known Timoshenko beam equations.These equations are applied to investigate the vibration and buckling characteristics of a transversely isotropic beam under uniform initial axial force and bending moment.
文摘A series of experiments was carried out so as to elucidate the effect of the phase transformation in the cooling process on welding distortion and residual stress generated by laser beam welding (LBW) and laser-arc hybrid welding (HYBW) on the high strength steel (HT780). Then, the experiments were simulated by 3D thermal elasticplastic analysis with FEM (Finite Element Method) which was performed with using the idealized mechanical properties considering the transformation superplasticity. From the results, the effects of the phase transformation on welding distortion and residual stress generated by LBW and HYBW were elucidated. Furthermore, the generality of the idealization of the mechanical properties was verified.
基金the National Natural Science Foundation of China (50479058, 10672032)
文摘Owing to the absence of proper analytical solution of cantilever beams for couple stress/strain gradient elasto-plastic theory, experimental studies of the cantilever beam in the micro-scale are not suitable for the determination of material length-scale. Based on the couple stress elasto-plasticity, an analytical solution of thin cantilever beams is firstly presented, and the solution can be regarded as an extension of the elastic and rigid-plastic solutions of pure bending beam. A comparison with numerical results shows that the current analytical solution is reliable for the case of σ0 〈〈 H 〈〈 E, where σ0 is the initial yield strength, H is the hardening modulus and E is the elastic modulus. Fortunately, the above mentioned condition can be satisfied for many metal materials, and thus the solution can be used to determine the material length-scale of micro-structures in conjunction with the experiment of cantilever beams in the micro-scale.
基金supported by the National Natural Science Foundation of China(Nos.11072143 and11272200)
文摘The materials with different moduli in tension and compression are called bi-modulus materials. Graphene is such a kind of materials with the highest strength and the thinnest thickness. In this paper, the mechanical response of the bi-modulus beam subjected to the temperature effect and placed on the Winkler foundation is studied. The differential equations about the neutral axis position and undetermined parameters of the normal strain of the bi-modulus foundation beam are established. Then, the analytical expressions of the normal stress, bending moment, and displacement of the foundation beam are derived. Simultaneously, a calculation procedure based on the finite element method (FEM) is developed to obtain the temperature stress of the bi-modulus struc- tures. It is shown that the obtained bi-modulus solutions can recover the classical modulus solution, and the results obtained by the analytical expressions, the present FEM proce- dure, and the traditional FEM software are consistent, which verifies the accuracy and reliability of the present analytical model and procedure. Finally, the difference between the bi-modulus results and the classical same modulus results is discussed, and several reasonable suggestions for calculating and optimizing the certain bi-modulus member in practical engineering are presented.
文摘A three-dimensional finite-element model (FEM) used for calculating electron beam (EB) welding temperature and stresses fields of thin plates of BT20 titanium has been developed in which the nonlinear thermophysical and thermo-mechanical properties of the material has been considered. The welding temperature field, the distributions of residual stresses in as-welded (AW) and electron beam local post-weld heat treatment (EBLPWHT) conditions have been successfully simulated. The results show that: (1) In the weld center, the maximum magnitude of residual tensile stresses of BT20 thin plates of Ti alloy is equal to 60%- 70% of its yield strength σs. (2) The residual tensile stresses in weld center can be even decreased after EBLPWHT and the longitudinal tensile stresses are decreased about 50% compared to joints in AW conditions. (3) The numerical calculating results of residual stresses by using FEM are basically in agreement with the experimental results. Combined with numerical calculating results, the effects of electron beam welding and EBLPWHT on the distribution of welding residual stresses in thin plates of BT20 have been analyzed in detail.
文摘Effects of tie beam length, width and overlap stress on settlement of foundations have been investigated. In this investigation square concrete footings have been used with dimensions (B × B × d) where (d) is footing depth and (B) is footing width (1, 1.5,2 m). Width of tie beam (b) has been taken equal to 0.25, 0.30, 0.40, 0.50 and 0.75 (m). Tie beam length (L) has been taken varying from B till 3B with same footing depth = 0.50 m. Effect of overlap stress on settlement as well as effect of tie beam width and length on settlement has been determined. Also, the efficiency of tie beam length and width has been obtained. An equation is presented to compute the overlap stress zone in case of existing tie beam. It is found that the settlement increases with increasing the length of tie beam which is clear after the effect of the overlap stresses zone. The width of overlap stress zone case of existing tie beam has been found to be equal to (1.6 -1.75) B. The settlement of footings decreases with increasing tie beam width. It is found that the settlement after the effect of the overlap stress zone increases with increasing the length of tie beam.
文摘Based on thermal-elasto-plastic finite element theory, a two-dimensional finite element model for calculating electron beam brazing temperature and residual stress fields of stainless steel radiator are presented. The distributions of temperature and residual stress are studied. The resuhs showed that temperature distribution on brazing surface is rather uniform, ranging from 1 026 ℃ to 1 090 ℃. The residual stresses are varied from initial compressive to tensile , and the variation of residual stress is very little in total zone of brazing surface.
基金Project supported by the Science and Technology of Department of Communications of Liaoning Province (Grant No.200514)the Science and Technology of Department of Education of Liaoning Province (Grant No.L2010378)
文摘Through the experiments of 7 T-section composite beams, steel fiber reinforced self-stressing concrete (SFRSC) as the composite beam in the composite layer was studied under the hogging bending. The tests simulated composite layer tensile strain under the hogging bending of inverted loading composite beams, giving the relationship under the different fatigue stress ratios between fatigue cycles and steel bar’s stress range, crack width, stiffness loss and damage, etc., in composite layer. This article established fatigue life equation, and analyzed SFRSC reinforced mechanism to crack width and stiffness loss. The results show that SFRSC as the composite beam concrete has excellent properties of crack resistance and tensile, can reinforce the fatigue crack width and stiffness loss of composite beams, and improve the durability and in normal use of composite beams in the hogging bending zone.
基金This project is supported by Foundation of National Defense Technology Key Laboratory, China (No.99JS50.3.2JW1402).
文摘The distributions of temperature and residual stresses in thin plates of BT20titanium alloy are numerically analyzed by three-dimensional finite element software duringelectron beam welding and electron beam local post-weld heat treatment (EBLPWHT). Combined withnumerical calculating results, the effects of different EBLPWHT mode and parameters, including heattreating position, heating width and heating time, on the distribution of welding residual stressesare analyzed. The results show that, the residual tensile stresses in weld center can be largelydecreased when the weld is heat treated at back preface of the plate. The numerical results alsoindicated that the magnitude of the residual longitudinal stresses of the weld and the zone vicinityof the weld is decreased, and the range of the residual longitudinal stresses is increased alongwith the increase of heating width and heating time.