An experimental investigation was conducted to study the performance of precast beam-column concrete connections using T-section steel inserts into the concrete beam and joint core,under reversed cyclic loading.Six 2/...An experimental investigation was conducted to study the performance of precast beam-column concrete connections using T-section steel inserts into the concrete beam and joint core,under reversed cyclic loading.Six 2/3-scale interior beam-column subassemblies,one monolithic concrete specimen and five precast concrete specimens were tested.One precast specimen was a simple connection for a gravity load resistant design.Other precast specimens were developed with different attributes to improve their seismic performance.The test results showed that the performance of the monolithic specimen M1 represented ductile seismic behavior.Failure of columns and joints could be prevented,and the failure of the frame occurred at the flexural plastic hinge formation at the beam ends,close to the column faces.For the precast specimens,the splitting crack along the longitudinal lapped splice was a major failure.The precast P5 specimen with double steel T-section inserts showed better seismic performance compared to the other precast models.However,the dowel bars connected to the steel inserts were too short to develop a bond.The design of the precast concrete beams with lap splice is needed for longer lap lengths and should be done at the beam mid span or at the low flexural stress region.展开更多
The eccentric connectivity index based on degree and eccentricity of the vertices of a graph is a widely used graph invariant in mathematics. In this paper we present the explicit generalized expressions for the eccen...The eccentric connectivity index based on degree and eccentricity of the vertices of a graph is a widely used graph invariant in mathematics. In this paper we present the explicit generalized expressions for the eccentric connectivity index and polynomial of the thorn graphs, and then consider some particular cases.展开更多
The column-to-beam flexural strength ratio(CBFSR)has been used in many seismic codes to achieve the strong column-weak beam(SCWB)failure mode in reinforced concrete(RC)frames,in which plastic hinges appear earlier in ...The column-to-beam flexural strength ratio(CBFSR)has been used in many seismic codes to achieve the strong column-weak beam(SCWB)failure mode in reinforced concrete(RC)frames,in which plastic hinges appear earlier in beams than in columns.However,seismic investigations show that the required limit of CBFSR in seismic codes usually cannot achieve the SCWB failure mode under strong earthquakes.This study investigates the failure modes of RC frames with different CBFSRs.Nine typical three-story RC frame models with different CBFSRs are designed in accordance with Chinese seismic codes.The seismic responses and failure modes of the frames are investigated through time-history analyses using 100 ground motion records.The results show that the required limit of the CBFSR that guarantees the SCWB failure mode depends on the beam-column connection type and the seismic intensity,and different types of beam-column connections exhibit different failure modes even though they are designed with the same CBFSR.Recommended CBFSRs are proposed for achieving the designed SCWB failure mode for different types of connections in RC frames under different seismic intensities.These results may provide some reference for further revisions of the SCWB design criterion in Chinese seismic codes.展开更多
For a connected simple graph G, the eccentricity ec(v) of a vertex v in G is the distance from v to a vertex farthest from v, and d(v) denotes the degree of a vertex v. The eccentric connectivity index of G, denot...For a connected simple graph G, the eccentricity ec(v) of a vertex v in G is the distance from v to a vertex farthest from v, and d(v) denotes the degree of a vertex v. The eccentric connectivity index of G, denoted by ξC(G), is defined as ∑vЕV(G) d(v)ec(v). In this paper, we will determine the graphs with maximal eccentric connectivity index among the connected graphs with n vertices and m edges(n ≤ m ≤ n + 4), and propose a conjecture on the graphs with maximal eccentric connectivity index and m edges (m ≥ n + 5). among the connected graphs with n vertices展开更多
Considering the glulam beam-column connection form and the number of bolts,monotonic loading test and finite element analysis was carried out on 9 connection specimens in 3 groups to study the rotational performance a...Considering the glulam beam-column connection form and the number of bolts,monotonic loading test and finite element analysis was carried out on 9 connection specimens in 3 groups to study the rotational performance and failure mode of the connection.The test results revealed that compared with U-shaped connectors,T-shaped connectors can effectively improve the ductility of connections,and the increase in the number of bolts can reduce the initial stiffness and ductility of connections.By theoretical analysis,formulas for calculating the initial stiffness and ultimate moment of connections were deduced.Subsequently,the moment-rotation theoretical model of connections was established based on the formulas,which were validated according to the test data and simulation results.The proposed model can not only improve the current theoretical system of heavy-duty glulam beam-column structure but also provide a theoretical basis for calculating the mechanical properties of the glulam beam-column connection.展开更多
Let G = (V,E) be a graph, where V(G) is a non-empty set of vertices and E(G) is a set of edges, e = uv∈E(G), d(u) is degree of vertex u. Then the first Zagreb polynomial and the first Zagreb index Zg<sub>1</...Let G = (V,E) be a graph, where V(G) is a non-empty set of vertices and E(G) is a set of edges, e = uv∈E(G), d(u) is degree of vertex u. Then the first Zagreb polynomial and the first Zagreb index Zg<sub>1</sub>(G,x) and Zg<sub>1</sub>(G) of the graph G are defined as Σ<sub>uv∈E(G)</sub>x<sup>(d<sub>u</sub>+d<sub>v</sub>)</sup> and Σ<sub>e=uv∈E(G)</sub>(d<sub>u</sub>+d<sub>v</sub>) respectively. Recently Ghorbani and Hosseinzadeh introduced the first Eccentric Zagreb index as Zg<sub>1</sub>*</sup>=Σ<sub>uv∈E(G)</sub>(ecc(v)+ecc(u)), that ecc(u) is the largest distance between u and any other vertex v of G. In this paper, we compute this new index (the first Eccentric Zagreb index or third Zagreb index) of an infinite family of linear Polycene parallelogram of benzenoid.展开更多
Beam-column connections are one of the most critical elements of reinforced concrete structures,especially in seismically active regions,and have been extensively evaluated experimentally and numerically.However,very ...Beam-column connections are one of the most critical elements of reinforced concrete structures,especially in seismically active regions,and have been extensively evaluated experimentally and numerically.However,very limited experimental studies about eccentric reinforced concrete connections including the effect of connected slabs are available.This study presents the experimental results of two half-scale eccentric beam-column-slab connections subjected to quasi-static cyclic loading.The horizontal eccentricity(eh)is maintained at 12.5%and 25%of column width(bc)for specimens 1 and 2,respectively.The damage pattern,performance levels,displacement ductility(μD),energy dissipation,and connection strength and stiffness are compared for both specimens,and the effect of eccentricity is evaluated.It is concluded that the eccentricity has no significant effect on the lateral load carrying capacity;however,the overall strength degradation increases with the increase in eccentricity.Similarly,the elastic stiffness of specimen 2 decreased by 14%as the eccentricity increased from 12.5%to 25%;however,the eccentricity had no significant effect on the overall stiffness degradation.μD decreased by 43%,and the energy dissipation capacity decreased by 40%in specimen 2 with higher eccentricity.The story drifts corresponding to the performance levels of the life safety(LS)and collapse prevention(CP)were found to be 28%lesser in specimen 2 than in specimen 1.展开更多
文摘An experimental investigation was conducted to study the performance of precast beam-column concrete connections using T-section steel inserts into the concrete beam and joint core,under reversed cyclic loading.Six 2/3-scale interior beam-column subassemblies,one monolithic concrete specimen and five precast concrete specimens were tested.One precast specimen was a simple connection for a gravity load resistant design.Other precast specimens were developed with different attributes to improve their seismic performance.The test results showed that the performance of the monolithic specimen M1 represented ductile seismic behavior.Failure of columns and joints could be prevented,and the failure of the frame occurred at the flexural plastic hinge formation at the beam ends,close to the column faces.For the precast specimens,the splitting crack along the longitudinal lapped splice was a major failure.The precast P5 specimen with double steel T-section inserts showed better seismic performance compared to the other precast models.However,the dowel bars connected to the steel inserts were too short to develop a bond.The design of the precast concrete beams with lap splice is needed for longer lap lengths and should be done at the beam mid span or at the low flexural stress region.
文摘The eccentric connectivity index based on degree and eccentricity of the vertices of a graph is a widely used graph invariant in mathematics. In this paper we present the explicit generalized expressions for the eccentric connectivity index and polynomial of the thorn graphs, and then consider some particular cases.
基金National Key R&D Program of China under Grant No.2017YFC1500601National Natural Science Foundation of China under Grant Nos.51678541 and 51708523Scientific Research Fund of the Institute of Engineering Mechanics,China Earthquake Administration under Grant No.2016A01。
文摘The column-to-beam flexural strength ratio(CBFSR)has been used in many seismic codes to achieve the strong column-weak beam(SCWB)failure mode in reinforced concrete(RC)frames,in which plastic hinges appear earlier in beams than in columns.However,seismic investigations show that the required limit of CBFSR in seismic codes usually cannot achieve the SCWB failure mode under strong earthquakes.This study investigates the failure modes of RC frames with different CBFSRs.Nine typical three-story RC frame models with different CBFSRs are designed in accordance with Chinese seismic codes.The seismic responses and failure modes of the frames are investigated through time-history analyses using 100 ground motion records.The results show that the required limit of the CBFSR that guarantees the SCWB failure mode depends on the beam-column connection type and the seismic intensity,and different types of beam-column connections exhibit different failure modes even though they are designed with the same CBFSR.Recommended CBFSRs are proposed for achieving the designed SCWB failure mode for different types of connections in RC frames under different seismic intensities.These results may provide some reference for further revisions of the SCWB design criterion in Chinese seismic codes.
基金Supported by China Postdoctoral Science Foundation(2012M520815 and 2013T60411)the National Natural Science Foundation of China(11001089)
文摘For a connected simple graph G, the eccentricity ec(v) of a vertex v in G is the distance from v to a vertex farthest from v, and d(v) denotes the degree of a vertex v. The eccentric connectivity index of G, denoted by ξC(G), is defined as ∑vЕV(G) d(v)ec(v). In this paper, we will determine the graphs with maximal eccentric connectivity index among the connected graphs with n vertices and m edges(n ≤ m ≤ n + 4), and propose a conjecture on the graphs with maximal eccentric connectivity index and m edges (m ≥ n + 5). among the connected graphs with n vertices
基金funded by the National First-class Disciplines(PNFD)High Level Natural Science Foundation of Hainan Province of China(Grant No.2019RC055)Project Supported by the Education Department of Hainan Province(Project No.hnjg2021-13).
文摘Considering the glulam beam-column connection form and the number of bolts,monotonic loading test and finite element analysis was carried out on 9 connection specimens in 3 groups to study the rotational performance and failure mode of the connection.The test results revealed that compared with U-shaped connectors,T-shaped connectors can effectively improve the ductility of connections,and the increase in the number of bolts can reduce the initial stiffness and ductility of connections.By theoretical analysis,formulas for calculating the initial stiffness and ultimate moment of connections were deduced.Subsequently,the moment-rotation theoretical model of connections was established based on the formulas,which were validated according to the test data and simulation results.The proposed model can not only improve the current theoretical system of heavy-duty glulam beam-column structure but also provide a theoretical basis for calculating the mechanical properties of the glulam beam-column connection.
文摘Let G = (V,E) be a graph, where V(G) is a non-empty set of vertices and E(G) is a set of edges, e = uv∈E(G), d(u) is degree of vertex u. Then the first Zagreb polynomial and the first Zagreb index Zg<sub>1</sub>(G,x) and Zg<sub>1</sub>(G) of the graph G are defined as Σ<sub>uv∈E(G)</sub>x<sup>(d<sub>u</sub>+d<sub>v</sub>)</sup> and Σ<sub>e=uv∈E(G)</sub>(d<sub>u</sub>+d<sub>v</sub>) respectively. Recently Ghorbani and Hosseinzadeh introduced the first Eccentric Zagreb index as Zg<sub>1</sub>*</sup>=Σ<sub>uv∈E(G)</sub>(ecc(v)+ecc(u)), that ecc(u) is the largest distance between u and any other vertex v of G. In this paper, we compute this new index (the first Eccentric Zagreb index or third Zagreb index) of an infinite family of linear Polycene parallelogram of benzenoid.
文摘Beam-column connections are one of the most critical elements of reinforced concrete structures,especially in seismically active regions,and have been extensively evaluated experimentally and numerically.However,very limited experimental studies about eccentric reinforced concrete connections including the effect of connected slabs are available.This study presents the experimental results of two half-scale eccentric beam-column-slab connections subjected to quasi-static cyclic loading.The horizontal eccentricity(eh)is maintained at 12.5%and 25%of column width(bc)for specimens 1 and 2,respectively.The damage pattern,performance levels,displacement ductility(μD),energy dissipation,and connection strength and stiffness are compared for both specimens,and the effect of eccentricity is evaluated.It is concluded that the eccentricity has no significant effect on the lateral load carrying capacity;however,the overall strength degradation increases with the increase in eccentricity.Similarly,the elastic stiffness of specimen 2 decreased by 14%as the eccentricity increased from 12.5%to 25%;however,the eccentricity had no significant effect on the overall stiffness degradation.μD decreased by 43%,and the energy dissipation capacity decreased by 40%in specimen 2 with higher eccentricity.The story drifts corresponding to the performance levels of the life safety(LS)and collapse prevention(CP)were found to be 28%lesser in specimen 2 than in specimen 1.