Optical metasurfaces,comprising subwavelength quasi-planar nanostructures,constitute a universal platform for manipulating the amplitude,phase,and polarization of light,thus paving a way for the next generation of hig...Optical metasurfaces,comprising subwavelength quasi-planar nanostructures,constitute a universal platform for manipulating the amplitude,phase,and polarization of light,thus paving a way for the next generation of highly integrated multifunctional optical devices.In this work,we introduce a reflective metasurface for the generation of a complete(angularly resolved)polarization set by randomly interleaving anisotropic plasmonic meta-atoms acting as nanoscale wave plates.In the proof-of-concept demonstration,we achieve multidirectional beam-steering into different polarization channels forming a complete set of polarization states,which can also be dynamically altered by switching the spin of incident light.The developed design concept represents a significant advancement in achieving flat polarization optics with advanced functionalities.展开更多
Dynamically controlling terahertz(THz)wavefronts in a designable fashion is highly desired in practice.However,available methods working at microwave frequencies do not work well in the THz regime due to lacking suita...Dynamically controlling terahertz(THz)wavefronts in a designable fashion is highly desired in practice.However,available methods working at microwave frequencies do not work well in the THz regime due to lacking suitable tunable elements with submicrometer sizes.Here,instead of locally controlling individual meta-atoms in a THz metasurface,we show that rotating different layers(each exhibiting a particular phase profile)in a cascaded metadevice at different speeds can dynamically change the effective Jonesmatrix property of the whole device,thus enabling extraordinary manipulations on the wavefront and polarization characteristics of a THz beam impinging on the device.After illustrating our strategy based on model calculations,we experimentally demonstrate two proof-of-concept metadevices,each consisting of two carefully designed all-silicon transmissive metasurfaces exhibiting different phase profiles.Rotating two metasurfaces inside the fabricated devices at different speeds,we experimentally demonstrate that the first metadevice can efficiently redirect a normally incident THz beam to scan over a wide solid-angle range,while the second one can dynamically manipulate both the wavefront and polarization of a THz beam.Our results pave the way to achieving dynamic control of THz beams,which is useful in many applications,such as THz radar,and bio-and chemical sensing and imaging.展开更多
基金funded by the Danmarks Frie Forskningsfond(1134-00010B)Villum Fonden(Award in Technical and Natural Sciences 2019 and Grant No.37372)Y.Deng would like to acknowledge the support from the China Scholarship Council(Grant No.202108330079).
文摘Optical metasurfaces,comprising subwavelength quasi-planar nanostructures,constitute a universal platform for manipulating the amplitude,phase,and polarization of light,thus paving a way for the next generation of highly integrated multifunctional optical devices.In this work,we introduce a reflective metasurface for the generation of a complete(angularly resolved)polarization set by randomly interleaving anisotropic plasmonic meta-atoms acting as nanoscale wave plates.In the proof-of-concept demonstration,we achieve multidirectional beam-steering into different polarization channels forming a complete set of polarization states,which can also be dynamically altered by switching the spin of incident light.The developed design concept represents a significant advancement in achieving flat polarization optics with advanced functionalities.
基金This work was financially supported by the National Natural Science Foundation of China(Grant Nos.11704240,11734007,and 91850101)the National Key Research and Development Program of China(Grant Nos.2017YFA0303504 and 2017YFA0700201)+1 种基金the Shanghai Science and Technology Committee(Grant Nos.18QA1401800,20JC1414601,and 20JC1414602)the Shanghai East Scholar Plan,Fudan University-CIOMP Joint Fund(No.FC2018-006)。
文摘Dynamically controlling terahertz(THz)wavefronts in a designable fashion is highly desired in practice.However,available methods working at microwave frequencies do not work well in the THz regime due to lacking suitable tunable elements with submicrometer sizes.Here,instead of locally controlling individual meta-atoms in a THz metasurface,we show that rotating different layers(each exhibiting a particular phase profile)in a cascaded metadevice at different speeds can dynamically change the effective Jonesmatrix property of the whole device,thus enabling extraordinary manipulations on the wavefront and polarization characteristics of a THz beam impinging on the device.After illustrating our strategy based on model calculations,we experimentally demonstrate two proof-of-concept metadevices,each consisting of two carefully designed all-silicon transmissive metasurfaces exhibiting different phase profiles.Rotating two metasurfaces inside the fabricated devices at different speeds,we experimentally demonstrate that the first metadevice can efficiently redirect a normally incident THz beam to scan over a wide solid-angle range,while the second one can dynamically manipulate both the wavefront and polarization of a THz beam.Our results pave the way to achieving dynamic control of THz beams,which is useful in many applications,such as THz radar,and bio-and chemical sensing and imaging.