With the development of information technology,more and more devices are connected to the Internet through wireless communication to complete data interconnection.Due to the broadcast characteristics ofwireless channe...With the development of information technology,more and more devices are connected to the Internet through wireless communication to complete data interconnection.Due to the broadcast characteristics ofwireless channels,wireless networks have suffered more and more malicious attacks.Physical layer security has received extensive attention from industry and academia.MIMO is considered to be one of the most important technologies related to physical layer security.Through beamforming technology,messages can be transmitted to legitimate users in an offset direction that is as orthogonal as possible to the interference channel to ensure the reception SINR by legitimate users.Combining the symbiotic radio(SR)technology,this paper considers a symbiotic radio antijamming MIMO system equipped with a multi-antenna system at the main base station.In order to avoid the interference signal and improve the SINR of the signal received by the user.The base station is equipped with a uniform rectangular antenna array,and using Null Space Projection(NSP)Beamforming,Intelligent Reflecting Surface(IRS)can assist in changing the beam’s angle.The simulation results show that NSP Beamforming could make a better use of the null space of interference,which can effectively improve the received SINR of users under directional interference,and improve the utilization efficiency of signal energy.展开更多
In engineering application,there is only one adaptive weights estimated by most of traditional early warning radars for adaptive interference suppression in a pulse reputation interval(PRI).Therefore,if the training s...In engineering application,there is only one adaptive weights estimated by most of traditional early warning radars for adaptive interference suppression in a pulse reputation interval(PRI).Therefore,if the training samples used to calculate the weight vector does not contain the jamming,then the jamming cannot be removed by adaptive spatial filtering.If the weight vector is constantly updated in the range dimension,the training data may contain target echo signals,resulting in signal cancellation effect.To cope with the situation that the training samples are contaminated by target signal,an iterative training sample selection method based on non-homogeneous detector(NHD)is proposed in this paper for updating the weight vector in entire range dimension.The principle is presented,and the validity is proven by simulation results.展开更多
In this paper,an intelligent reflecting surface(IRS)-and-unmanned aerial vehicle(UAV)-assisted two-way amplify-and-forward(AF)relay network in maritime Internet of Things(IoT)is proposed,where ship1(S1)and ship2(S2)ca...In this paper,an intelligent reflecting surface(IRS)-and-unmanned aerial vehicle(UAV)-assisted two-way amplify-and-forward(AF)relay network in maritime Internet of Things(IoT)is proposed,where ship1(S1)and ship2(S2)can be viewed as data collecting centers.To enhance the message exchange rate between S1 and S2,a problem of maximizing minimum rate is cast,where the variables,namely AF relay beamforming matrix and IRS phase shifts of two time slots,need to be optimized.To achieve a maximum rate,a low-complexity alternately iterative(AI)scheme based on zero forcing and successive convex approximation(LC-ZF-SCA)algorithm is presented.To obtain a significant rate enhancement,a high-performance AI method based on one step,semidefinite programming and penalty SCA(ONSSDP-PSCA)is proposed.Simulation results show that by the proposed LC-ZF-SCA and ONS-SDP-PSCA methods,the rate of the IRS-and-UAV-assisted AF relay network surpass those of with random phase and only AF relay networks.Moreover,ONS-SDP-PSCA perform better than LC-ZF-SCA in aspect of rate.展开更多
Cell-free systems significantly improve network capacity by enabling joint user service without cell boundaries,eliminating intercell interference.However,to satisfy further capacity demands,it leads to high-cost prob...Cell-free systems significantly improve network capacity by enabling joint user service without cell boundaries,eliminating intercell interference.However,to satisfy further capacity demands,it leads to high-cost problems of both hardware and power consumption.In this paper,we investigate multiple reconfigurable intelligent surfaces(RISs)aided cell-free systems where RISs are introduced to improve spectrum efficiency in an energy-efficient way.To overcome the centralized high complexity and avoid frequent information exchanges,a cooperative distributed beamforming design is proposed to maximize the weighted sum-rate performance.In particular,the alternating optimization method is utilized with the distributed closed-form solution of active beamforming being derived locally at access points,and phase shifts are obtained centrally based on the Riemannian conjugate gradient(RCG)manifold method.Simulation results verify the effectiveness of the proposed design whose performance is comparable to the centralized scheme and show great superiority of the RISs-aided system over the conventional cellular and cell-free system.展开更多
The hybrid beamforming is a promising technology for the millimeter wave MIMO system,which provides high spectrum efficiency,high data rate transmission,and a good balance between transmission performance and hardware...The hybrid beamforming is a promising technology for the millimeter wave MIMO system,which provides high spectrum efficiency,high data rate transmission,and a good balance between transmission performance and hardware complexity.The most existing beamforming systems transmit multiple streams by formulating multiple orthogonal beams.However,the Neural network Hybrid Beamforming(NHB)adopts a totally different strategy,which combines multiple streams into one and transmits by employing a high-order non-orthogonal modulation strategy.Driven by the Deep Learning(DL)hybrid beamforming,in this work,we propose a DL-driven nonorthogonal hybrid beamforming for the single-user multiple streams scenario.We first analyze the beamforming strategy of NHB and prove it with better Bit Error Rate(BER)performance than the orthogonal hybrid beamforming even with the optimal power allocation.Inspired by the NHB,we propose a new DL-driven beamforming scheme to simulate the NHB behavior,which avoids time-consuming neural network training and achieves better BERs than traditional hybrid beamforming.Moreover,our simulation results demonstrate that the DL-driven nonorthogonal beamforming outperforms its traditional orthogonal beamforming counterpart in the presence of subconnected schemes and imperfect Channel State Information(CSI).展开更多
In this article,novel emulation strategies for the sectored multiple probe anechoic chamber(SMPAC)are proposed to enable the reliable evaluation of the massive multiple-input multiple-output(MIMO)device operating at b...In this article,novel emulation strategies for the sectored multiple probe anechoic chamber(SMPAC)are proposed to enable the reliable evaluation of the massive multiple-input multiple-output(MIMO)device operating at beamforming mode,which requires a realistic non-stationary channel environment.For the dynamic propagation emulation,an efficient closed-form probe weighting strategy minimizing the power angular spectrum(PAS)emulation errors is derived,substantially reducing the associated computational complexity.On the other hand,a novel probe selection algorithm is proposed to reproduce a more accurate fading environment.Various standard channel models and setup configurations are comprehensively simulated to validate the capacity of the proposed methods.The simulation results show that more competent active probes are selected with the proposed method compared to the conventional algorithms.Furthermore,the derived closedform probe weighting strategy offers identical accuracy to that obtained with complicated numerical optimization.Moreover,a realistic dynamic channel measured in an indoor environment is reconstructed with the developed methodologies,and 95.6%PAS similarity can be achieved with 6 active probes.The satisfactory results demonstrate that the proposed algorithms are suitable for arbitrary channel emulation.展开更多
In this paper,a three-node transmission model is conceived,where the base station(BS)node leverages 3D beamforming,the reconfigurable intelligent surface(RIS)node can constructively reconfigure the wireless channel,th...In this paper,a three-node transmission model is conceived,where the base station(BS)node leverages 3D beamforming,the reconfigurable intelligent surface(RIS)node can constructively reconfigure the wireless channel,the user node only has a single antenna due to a limited price.Maximization of its downlink spectral efficiency is a joint optimization problem of three variables,namely phase-shift matrixΦof RIS,tilt angleθand beamforming vector w used in BS 3D beamforming.We solve this problem by employing the alternating optimization(AO)algorithm.But,in each iteration,a specific optimization order of firstlyΦ,secondlyθand finally w is proposed,which facilitates the search of optimalθin the way of narrowing its trust region and enabling unimodal property over the narrowed trust region.It finally results in a better combination of{Φ,θ,w}.展开更多
The accuracy of acquired channel state information(CSI)for beamforming design is essential for achievable performance in multiple-input multiple-output(MIMO)systems.However,in a high-speed moving scene with time-divis...The accuracy of acquired channel state information(CSI)for beamforming design is essential for achievable performance in multiple-input multiple-output(MIMO)systems.However,in a high-speed moving scene with time-division duplex(TDD)mode,the acquired CSI depending on the channel reciprocity is inevitably outdated,leading to outdated beamforming design and then performance degradation.In this paper,a robust beamforming design under channel prediction errors is proposed for a time-varying MIMO system to combat the degradation further,based on the channel prediction technique.Specifically,the statistical characteristics of historical channel prediction errors are exploited and modeled.Moreover,to deal with random error terms,deterministic equivalents are adopted to further explore potential beamforming gain through the statistical information and ultimately derive the robust design aiming at maximizing weighted sum-rate performance.Simulation results show that the proposed beamforming design can maintain outperformance during the downlink transmission time even when channels vary fast,compared with the traditional beamforming design.展开更多
An experimental study is conducted on several retro-reflective beamforming schemes for wireless power transmission to multiple wireless power receivers(referred to herein as“targets”).The experimental results demons...An experimental study is conducted on several retro-reflective beamforming schemes for wireless power transmission to multiple wireless power receivers(referred to herein as“targets”).The experimental results demonstrate that,when multiple targets broadcast continuous-wave pilot signals at respective frequencies,a retro-reflective wireless power transmitter is capable of generating multiple wireless power beams aiming at the respective targets as long as the multiple pilot signals are explicitly separated from one another by the wireless power transmitter.However,various practical complications are identified when the pilot signals of multiple targets are not appropriately differentiated from each other by the wireless power transmitter.Specifically,when multiple pilot signals are considered to be carried by the same frequency,the wireless power transmission performance becomes heavily dependent on the interaction among the pilot signals,which is highly undesirable in practice.In conclusion,it is essential for a retro-reflective wireless power transmitter to explicitly discriminate multiple targets’pilot signals among each other.展开更多
Reconfigurable intelligent surface(RIS)employs passive beamforming to control the wireless propagation channel,which benefits the wireless communication capacity and the received energy efficiency of wireless power tr...Reconfigurable intelligent surface(RIS)employs passive beamforming to control the wireless propagation channel,which benefits the wireless communication capacity and the received energy efficiency of wireless power transfer(WPT)systems.Such beamforming schemes are classified as discrete and non-convex integer program-ming problems.In this paper,we propose a Monte-Carlo(MC)based random energy passive beamforming of RIS to achieve the maximum received power of electromagnetic(EM)WPT systems.Generally,the Gibbs sampling and re-sampling methods are employed to generate phase shift vector samples.And the sample with the maximum received power is considered the optimal solution.In order to adapt to the application scenarios,we develop two types of passive beamforming algorithms based on such MC sampling methods.The first passive beamforming uses an approximation of the integer programming as the initial sample,which is calculated based on the channel information.And the second one is a purely randomized algorithm with the only total received power feedback.The proposed methods present several advantages for RIS control,e.g.,fast convergence,easy implementation,robustness to the channel noise,and limited feedback requirement,and they are applicable even if the channel information is unknown.According to the simulation results,our proposed methods outperform other approxi-mation and genetic algorithms.With our methods,the WPT system even significantly improves the power effi-ciency in the nonline-of-sight(NLOS)environment.展开更多
Intelligent reflecting surface(IRS)is widely recognized as a promising technique to enhance the system perfor-mance,and thus is a hot research topic in future wireless communications.In this context,this paper propose...Intelligent reflecting surface(IRS)is widely recognized as a promising technique to enhance the system perfor-mance,and thus is a hot research topic in future wireless communications.In this context,this paper proposes a robust BF scheme to improve the spectrum and energy harvesting efficiencies for the IRS-aided simultaneous wireless information and power transfer(SWIPT)in a cognitive radio network(CRN).Here,the base station(BS)utilizes spectrum assigned to the primary users(PUs)to simultaneously serve multiple energy receivers(ERs)and information receivers(IRs)through IRS-aided multicast technology.In particular,by assuming that only the imperfect channel state information(CSI)is available,we first formulate a constrained problem to maximize the minimal achievable rate of IRs,while satisfying the harvesting energy threshold of ERs,the quality-of-service requirement of IRs,the interference threshold of PUs and transmit power budget of BS.To address the non-convex problem,we then adopt triangle inequality to deal with the channel uncertainty,and propose a low-complexity algorithm combining alternating direction method of multipliers(ADMM)with alternating optimi-zation(AO)to jointly optimize the active and passive beamformers for the BS and IRS,respectively.Finally,our simulation results confirm the effectiveness of the proposed BF scheme and also provide useful insights into the importance of introducing IRS into the CRN with SWIPT.展开更多
Fractional order algorithms have shown promising results in various signal processing applications due to their ability to improve performance without significantly increasing complexity.The goal of this work is to in...Fractional order algorithms have shown promising results in various signal processing applications due to their ability to improve performance without significantly increasing complexity.The goal of this work is to inves-tigate the use of fractional order algorithm in the field of adaptive beam-forming,with a focus on improving performance while keeping complexity lower.The effectiveness of the algorithm will be studied and evaluated in this context.In this paper,a fractional order least mean square(FLMS)algorithm is proposed for adaptive beamforming in wireless applications for effective utilization of resources.This algorithm aims to improve upon existing beam-forming algorithms,which are inefficient in performance,by offering faster convergence,better accuracy,and comparable computational complexity.The FLMS algorithm uses fractional order gradient in addition to the standard ordered gradient in weight adaptation.The derivation of the algorithm is provided and supported by mathematical convergence analysis.Performance is evaluated through simulations using mean square error(MSE)minimization as a metric and compared with the standard LMS algorithm for various parameters.The results,obtained through Matlab simulations,show that the FLMS algorithm outperforms the standard LMS in terms of convergence speed,beampattern accuracy and scatter plots.FLMS outperforms LMS in terms of convergence speed by 34%.From this,it can be concluded that FLMS is a better candidate for adaptive beamforming and other signal processing applications.展开更多
Hybrid beamforming(HBF)has become an attractive and important technology in massive multiple-input multiple-output(MIMO)millimeter-wave(mmWave)systems.There are different hybrid architectures in HBF depending on diffe...Hybrid beamforming(HBF)has become an attractive and important technology in massive multiple-input multiple-output(MIMO)millimeter-wave(mmWave)systems.There are different hybrid architectures in HBF depending on different connection strategies of the phase shifter network between antennas and radio frequency chains.This paper investigates HBF optimization with different hybrid architectures in broadband point-to-point mmWave MIMO systems.The joint hybrid architecture and beamforming optimization problem is divided into two sub-problems.First,we transform the spectral efficiency maximization problem into an equivalent weighted mean squared error minimization problem,and propose an algorithm based on the manifold optimization method for the hybrid beamformer with a fixed hybrid architecture.The overlapped subarray architecture which balances well between hardware costs and system performance is investigated.We further propose an algorithm to dynamically partition antenna subarrays and combine it with the HBF optimization algorithm.Simulation results are presented to demonstrate the performance improvement of our proposed algorithms.展开更多
A method of space-time block coding (STBC) system based on adaptive beamforming of cyclostationarity signal algorithm is proposed.The method uses cyclostationarity of signals to achieve adaptive beamforming,then con...A method of space-time block coding (STBC) system based on adaptive beamforming of cyclostationarity signal algorithm is proposed.The method uses cyclostationarity of signals to achieve adaptive beamforming,then constructs a pair of low correlated transmit beams based on beamform estimation of multiple component signals of uplink.Using these two selected transmit beams,signals encoded by STBC are transmitted to achieve diversity gain and beamforming gain at the same time,and increase the signal to noise ratio (SNR) of downlink.With simple computation and fast convergence performance,the proposed scheme is applicable for time division multiple access (TDMA) wireless communication operated in a complex interference environment.Simulation results show that the proposed scheme has better performance than conventional STBC,and can obtain a gain of about 5 dB when the bit error ratio (BER) is 10-4.展开更多
In downlink cellular multiple users in multiple cells systems using beams, the should cooperate to generate beams to improve the spectrum efficiency. A mathematical model for the multi-cell multi-user downlink transm...In downlink cellular multiple users in multiple cells systems using beams, the should cooperate to generate beams to improve the spectrum efficiency. A mathematical model for the multi-cell multi-user downlink transmission is established, and the gradients of the variables including beamfonning filters, receiving filters and transmitting power are calculated. Then, a gradient-project-based cooperative beamforming scheme is proposed in which each user iteratively adjusts bearnforming variables in the direction of the gradients and projects onto feasible spaces. The information exchange protocol needed to support the scheme is also described. Simulation results show that the proposed scheme can achieve an average spectral efficiency of about 5 bit/( s · Hz · cell). The results show that cooperative beamforming can improve the spectrum efficiency of the cellular systems.展开更多
Detection and localization of acoustic events in an environment are important to protect the military and civilian installations. While there are finite paths of wave propagation in simple or low reverberant environme...Detection and localization of acoustic events in an environment are important to protect the military and civilian installations. While there are finite paths of wave propagation in simple or low reverberant environments, in complex environments (e.g. a complex urban environment) obstacles such as terrain or buildings introduce multipath propagations, reflections and diffractions which make source localization challenging. Therefore, numeric results of simulated models (simplified and Fort Benning urban models) of 3D complex environments can highly help in real applications. Some of the conventional beamformer algorithms have been used in order to localize point sound source. Analyzing results shows that MRCB beamformer has better performance than others in this issue and its accuracy superiority is more than 3 m in simplified urban model and 5 m in Fort Benning urban model with respect to the SOC. Moreover, due to possible uncertainties between the numerical model and the actual environment such as squall effect, temperature gradient etc., sensitivity of the beamformers to temperature gradient is investigated which shows higher robustness of SOC beamformer than the MRCB beamformer. According to the results, due to gradient temperature uncertainty the accuracy degradation of the SOC is about 1m while in MRCB it alters from 0.5 m to 20 m approximately at all SNRs. COMSOL Multiphysics has been used to numerically simulate the environment of wave propagation.展开更多
In this paper, we present a theoretical analysis of the output signal-to-interference-plus-noise ratio (SINR) for eigen-space beamformers so as to investigate the performance degradation caused by large pointing error...In this paper, we present a theoretical analysis of the output signal-to-interference-plus-noise ratio (SINR) for eigen-space beamformers so as to investigate the performance degradation caused by large pointing errors. For the sake of reducing such performance loss, a robust scheme, which consists of two cascaded signal processors, is proposed for adaptive beamformers. In the first stage, an algorithm possessing time efficiency is developed to adjust the direc-tion-of-arrival (DOA) estimate of the desired source. Based the achieved DOA estimate, the second stage provides an eigenspace beamformer combined with the spatial derivative constraints (SDC) to further mitigate the cancellation of the desired signal. Analysis and numerical results have been conducted to verify that the proposed scheme yields a better robustness against pointing errors than the conventional approaches.展开更多
Millimeter wave(mmWave) communications of unmanned aerial vehicles(UAVs) have drawn dramatic attentions for its flexibility on a variety of applications.Recently,channel tracking base on the spatial features has been ...Millimeter wave(mmWave) communications of unmanned aerial vehicles(UAVs) have drawn dramatic attentions for its flexibility on a variety of applications.Recently,channel tracking base on the spatial features has been proposed to solve the problem of beam misalignments due to the UAV navigation.However,unstable beam pointing caused by the non-ideal beam tracking environment may impact the performance of mmWave systems significantly.In this paper,an improved beamforming method is presented to overcome this shortcoming.Firstly,the effect of the beam deviation is analyzed through the establishment of the equivalent data rate.Then,combining the quantification of spatial angle and the improved orthogonal matching pursuit(OMP) algorithm,an optimized beam corresponding to the beam deviation is obtained.Simulation results show that the optimized beam of the proposed approach can effectively improve the spectral efficiency without improving the complexity when the beam pointing is unstable.展开更多
Unmanned aerial vehicle(UAV)has been widely used in many fields and is arousing global attention.As the resolution of the equipped sensors in the UAV becomes higher and the tasks become more complicated,much higher da...Unmanned aerial vehicle(UAV)has been widely used in many fields and is arousing global attention.As the resolution of the equipped sensors in the UAV becomes higher and the tasks become more complicated,much higher data rate and longer communication range are required in the foreseeable future.As the millimeter-wave(mm Wave)band can provide more abundant frequency resources than the microwave band,much higher achievable rate can be guaranteed to support UAV services such as video surveillance,hotspot coverage,and emergency communications,etc.The flexible mm Wave beamforming can be used to overcome the high path loss caused by the long propagation distance.In this paper,we study three typical application scenarios for mm Wave-UAV communications,namely communication terminal,access point,and backbone link.We present several key enabling techniques for UAV communications,including beam tracking,multi-beam forming,joint Tx/Rx beam alignment,and full-duplex relay techniques.We show the coupling relation between mm Wave beamforming and UAV positioning for mm Wave-UAV communications.Lastly,we summarize the challenges and research directions of mm Wave-UAV communications in detail.展开更多
基金This work was supported by the National Natural Science Foundation of China(62271192)Henan Provincial Scientists Studio(GZS2022015),Central Plains Talents Plan(ZYYCYU202012173)+8 种基金National Key R&D Program of China(2020YFB2008400)the Program of CEMEE(2022Z00202B)LAGEO of Chinese Academy of Sciences(LAGEO-2019-2)Program for Science&Technology Innovation Talents in the University of Henan Province(20HASTIT022)Natural Science Foundation of Henan under Grant 202300410126Program for Innovative Research Team in University of Henan Province(21IRTSTHN015)Equipment Pre-Research Joint Research Program of Ministry of Education(8091B032129)Training Program for Young Scholar of Henan Province forColleges andUniversities(2020GGJS172)Programfor Science&Technology Innovation Talents in Universities of Henan Province under Grand(22HASTIT020)and Henan Province Science Fund for Distinguished Young Scholars(222300420006).
文摘With the development of information technology,more and more devices are connected to the Internet through wireless communication to complete data interconnection.Due to the broadcast characteristics ofwireless channels,wireless networks have suffered more and more malicious attacks.Physical layer security has received extensive attention from industry and academia.MIMO is considered to be one of the most important technologies related to physical layer security.Through beamforming technology,messages can be transmitted to legitimate users in an offset direction that is as orthogonal as possible to the interference channel to ensure the reception SINR by legitimate users.Combining the symbiotic radio(SR)technology,this paper considers a symbiotic radio antijamming MIMO system equipped with a multi-antenna system at the main base station.In order to avoid the interference signal and improve the SINR of the signal received by the user.The base station is equipped with a uniform rectangular antenna array,and using Null Space Projection(NSP)Beamforming,Intelligent Reflecting Surface(IRS)can assist in changing the beam’s angle.The simulation results show that NSP Beamforming could make a better use of the null space of interference,which can effectively improve the received SINR of users under directional interference,and improve the utilization efficiency of signal energy.
基金supported by the National Natural Science Foundation of China(62371049)。
文摘In engineering application,there is only one adaptive weights estimated by most of traditional early warning radars for adaptive interference suppression in a pulse reputation interval(PRI).Therefore,if the training samples used to calculate the weight vector does not contain the jamming,then the jamming cannot be removed by adaptive spatial filtering.If the weight vector is constantly updated in the range dimension,the training data may contain target echo signals,resulting in signal cancellation effect.To cope with the situation that the training samples are contaminated by target signal,an iterative training sample selection method based on non-homogeneous detector(NHD)is proposed in this paper for updating the weight vector in entire range dimension.The principle is presented,and the validity is proven by simulation results.
基金supported in part by the National Natural Science Foundation of China (Nos.U22A2002, and 62071234)the Hainan Province Science and Technology Special Fund (ZDKJ2021022)+1 种基金the Scientific Research Fund Project of Hainan University under Grant KYQD(ZR)-21008the Collaborative Innovation Center of Information Technology, Hainan University (XTCX2022XXC07)
文摘In this paper,an intelligent reflecting surface(IRS)-and-unmanned aerial vehicle(UAV)-assisted two-way amplify-and-forward(AF)relay network in maritime Internet of Things(IoT)is proposed,where ship1(S1)and ship2(S2)can be viewed as data collecting centers.To enhance the message exchange rate between S1 and S2,a problem of maximizing minimum rate is cast,where the variables,namely AF relay beamforming matrix and IRS phase shifts of two time slots,need to be optimized.To achieve a maximum rate,a low-complexity alternately iterative(AI)scheme based on zero forcing and successive convex approximation(LC-ZF-SCA)algorithm is presented.To obtain a significant rate enhancement,a high-performance AI method based on one step,semidefinite programming and penalty SCA(ONSSDP-PSCA)is proposed.Simulation results show that by the proposed LC-ZF-SCA and ONS-SDP-PSCA methods,the rate of the IRS-and-UAV-assisted AF relay network surpass those of with random phase and only AF relay networks.Moreover,ONS-SDP-PSCA perform better than LC-ZF-SCA in aspect of rate.
文摘Cell-free systems significantly improve network capacity by enabling joint user service without cell boundaries,eliminating intercell interference.However,to satisfy further capacity demands,it leads to high-cost problems of both hardware and power consumption.In this paper,we investigate multiple reconfigurable intelligent surfaces(RISs)aided cell-free systems where RISs are introduced to improve spectrum efficiency in an energy-efficient way.To overcome the centralized high complexity and avoid frequent information exchanges,a cooperative distributed beamforming design is proposed to maximize the weighted sum-rate performance.In particular,the alternating optimization method is utilized with the distributed closed-form solution of active beamforming being derived locally at access points,and phase shifts are obtained centrally based on the Riemannian conjugate gradient(RCG)manifold method.Simulation results verify the effectiveness of the proposed design whose performance is comparable to the centralized scheme and show great superiority of the RISs-aided system over the conventional cellular and cell-free system.
基金This work is supported by Sichuan Science and Technology Program(NO.2021YFG0127).
文摘The hybrid beamforming is a promising technology for the millimeter wave MIMO system,which provides high spectrum efficiency,high data rate transmission,and a good balance between transmission performance and hardware complexity.The most existing beamforming systems transmit multiple streams by formulating multiple orthogonal beams.However,the Neural network Hybrid Beamforming(NHB)adopts a totally different strategy,which combines multiple streams into one and transmits by employing a high-order non-orthogonal modulation strategy.Driven by the Deep Learning(DL)hybrid beamforming,in this work,we propose a DL-driven nonorthogonal hybrid beamforming for the single-user multiple streams scenario.We first analyze the beamforming strategy of NHB and prove it with better Bit Error Rate(BER)performance than the orthogonal hybrid beamforming even with the optimal power allocation.Inspired by the NHB,we propose a new DL-driven beamforming scheme to simulate the NHB behavior,which avoids time-consuming neural network training and achieves better BERs than traditional hybrid beamforming.Moreover,our simulation results demonstrate that the DL-driven nonorthogonal beamforming outperforms its traditional orthogonal beamforming counterpart in the presence of subconnected schemes and imperfect Channel State Information(CSI).
基金supported by National Natural Science Foundation of China(No.62090015,No.61821001)BUPT Excellent Ph.D.Students Foundation under Grant(CX2021216)。
文摘In this article,novel emulation strategies for the sectored multiple probe anechoic chamber(SMPAC)are proposed to enable the reliable evaluation of the massive multiple-input multiple-output(MIMO)device operating at beamforming mode,which requires a realistic non-stationary channel environment.For the dynamic propagation emulation,an efficient closed-form probe weighting strategy minimizing the power angular spectrum(PAS)emulation errors is derived,substantially reducing the associated computational complexity.On the other hand,a novel probe selection algorithm is proposed to reproduce a more accurate fading environment.Various standard channel models and setup configurations are comprehensively simulated to validate the capacity of the proposed methods.The simulation results show that more competent active probes are selected with the proposed method compared to the conventional algorithms.Furthermore,the derived closedform probe weighting strategy offers identical accuracy to that obtained with complicated numerical optimization.Moreover,a realistic dynamic channel measured in an indoor environment is reconstructed with the developed methodologies,and 95.6%PAS similarity can be achieved with 6 active probes.The satisfactory results demonstrate that the proposed algorithms are suitable for arbitrary channel emulation.
基金supported by the National Key R&D Program of China under Grant 2019YFB1803400partly by National Natural Science Foundation of China under Grant 62071394.
文摘In this paper,a three-node transmission model is conceived,where the base station(BS)node leverages 3D beamforming,the reconfigurable intelligent surface(RIS)node can constructively reconfigure the wireless channel,the user node only has a single antenna due to a limited price.Maximization of its downlink spectral efficiency is a joint optimization problem of three variables,namely phase-shift matrixΦof RIS,tilt angleθand beamforming vector w used in BS 3D beamforming.We solve this problem by employing the alternating optimization(AO)algorithm.But,in each iteration,a specific optimization order of firstlyΦ,secondlyθand finally w is proposed,which facilitates the search of optimalθin the way of narrowing its trust region and enabling unimodal property over the narrowed trust region.It finally results in a better combination of{Φ,θ,w}.
基金supported by the ZTE Industry⁃University⁃Institute Cooper⁃ation Funds under Grant No.2021ZTE01⁃03.
文摘The accuracy of acquired channel state information(CSI)for beamforming design is essential for achievable performance in multiple-input multiple-output(MIMO)systems.However,in a high-speed moving scene with time-division duplex(TDD)mode,the acquired CSI depending on the channel reciprocity is inevitably outdated,leading to outdated beamforming design and then performance degradation.In this paper,a robust beamforming design under channel prediction errors is proposed for a time-varying MIMO system to combat the degradation further,based on the channel prediction technique.Specifically,the statistical characteristics of historical channel prediction errors are exploited and modeled.Moreover,to deal with random error terms,deterministic equivalents are adopted to further explore potential beamforming gain through the statistical information and ultimately derive the robust design aiming at maximizing weighted sum-rate performance.Simulation results show that the proposed beamforming design can maintain outperformance during the downlink transmission time even when channels vary fast,compared with the traditional beamforming design.
基金supported in part by the National Natural Science Foundation of China(61871220)the Natural Science Foundation of Jiangsu Province(BK20201293)。
文摘An experimental study is conducted on several retro-reflective beamforming schemes for wireless power transmission to multiple wireless power receivers(referred to herein as“targets”).The experimental results demonstrate that,when multiple targets broadcast continuous-wave pilot signals at respective frequencies,a retro-reflective wireless power transmitter is capable of generating multiple wireless power beams aiming at the respective targets as long as the multiple pilot signals are explicitly separated from one another by the wireless power transmitter.However,various practical complications are identified when the pilot signals of multiple targets are not appropriately differentiated from each other by the wireless power transmitter.Specifically,when multiple pilot signals are considered to be carried by the same frequency,the wireless power transmission performance becomes heavily dependent on the interaction among the pilot signals,which is highly undesirable in practice.In conclusion,it is essential for a retro-reflective wireless power transmitter to explicitly discriminate multiple targets’pilot signals among each other.
基金supported by National Nature Science Foundation of China(No.62171484)Zhuhai Fundamental and Application Research(No.ZH22017003210006PWC)Fundamental Research Funds for the Central Universities(No.21621420).
文摘Reconfigurable intelligent surface(RIS)employs passive beamforming to control the wireless propagation channel,which benefits the wireless communication capacity and the received energy efficiency of wireless power transfer(WPT)systems.Such beamforming schemes are classified as discrete and non-convex integer program-ming problems.In this paper,we propose a Monte-Carlo(MC)based random energy passive beamforming of RIS to achieve the maximum received power of electromagnetic(EM)WPT systems.Generally,the Gibbs sampling and re-sampling methods are employed to generate phase shift vector samples.And the sample with the maximum received power is considered the optimal solution.In order to adapt to the application scenarios,we develop two types of passive beamforming algorithms based on such MC sampling methods.The first passive beamforming uses an approximation of the integer programming as the initial sample,which is calculated based on the channel information.And the second one is a purely randomized algorithm with the only total received power feedback.The proposed methods present several advantages for RIS control,e.g.,fast convergence,easy implementation,robustness to the channel noise,and limited feedback requirement,and they are applicable even if the channel information is unknown.According to the simulation results,our proposed methods outperform other approxi-mation and genetic algorithms.With our methods,the WPT system even significantly improves the power effi-ciency in the nonline-of-sight(NLOS)environment.
基金supported in part by the Key International Cooper-ation Research Project under Grant 61720106003in part by NUPTSF under Grant NY220111+1 种基金in part by NUPTSF under Grant NY221009in part by the Postgraduate Research and Practice Innovation Program of Jiangsu Province under Grant KYCX22_0959.
文摘Intelligent reflecting surface(IRS)is widely recognized as a promising technique to enhance the system perfor-mance,and thus is a hot research topic in future wireless communications.In this context,this paper proposes a robust BF scheme to improve the spectrum and energy harvesting efficiencies for the IRS-aided simultaneous wireless information and power transfer(SWIPT)in a cognitive radio network(CRN).Here,the base station(BS)utilizes spectrum assigned to the primary users(PUs)to simultaneously serve multiple energy receivers(ERs)and information receivers(IRs)through IRS-aided multicast technology.In particular,by assuming that only the imperfect channel state information(CSI)is available,we first formulate a constrained problem to maximize the minimal achievable rate of IRs,while satisfying the harvesting energy threshold of ERs,the quality-of-service requirement of IRs,the interference threshold of PUs and transmit power budget of BS.To address the non-convex problem,we then adopt triangle inequality to deal with the channel uncertainty,and propose a low-complexity algorithm combining alternating direction method of multipliers(ADMM)with alternating optimi-zation(AO)to jointly optimize the active and passive beamformers for the BS and IRS,respectively.Finally,our simulation results confirm the effectiveness of the proposed BF scheme and also provide useful insights into the importance of introducing IRS into the CRN with SWIPT.
基金supported by the Office of Research and Innovation(IRG project#23207)at Alfaisal University,Riyadh,KSA.
文摘Fractional order algorithms have shown promising results in various signal processing applications due to their ability to improve performance without significantly increasing complexity.The goal of this work is to inves-tigate the use of fractional order algorithm in the field of adaptive beam-forming,with a focus on improving performance while keeping complexity lower.The effectiveness of the algorithm will be studied and evaluated in this context.In this paper,a fractional order least mean square(FLMS)algorithm is proposed for adaptive beamforming in wireless applications for effective utilization of resources.This algorithm aims to improve upon existing beam-forming algorithms,which are inefficient in performance,by offering faster convergence,better accuracy,and comparable computational complexity.The FLMS algorithm uses fractional order gradient in addition to the standard ordered gradient in weight adaptation.The derivation of the algorithm is provided and supported by mathematical convergence analysis.Performance is evaluated through simulations using mean square error(MSE)minimization as a metric and compared with the standard LMS algorithm for various parameters.The results,obtained through Matlab simulations,show that the FLMS algorithm outperforms the standard LMS in terms of convergence speed,beampattern accuracy and scatter plots.FLMS outperforms LMS in terms of convergence speed by 34%.From this,it can be concluded that FLMS is a better candidate for adaptive beamforming and other signal processing applications.
基金supported by ZTE Industry-University-Institute Cooperation Funds,the Natural Science Foundation of Shanghai under Grant No.23ZR1407300the National Natural Science Foundation of China un⁃der Grant No.61771147.
文摘Hybrid beamforming(HBF)has become an attractive and important technology in massive multiple-input multiple-output(MIMO)millimeter-wave(mmWave)systems.There are different hybrid architectures in HBF depending on different connection strategies of the phase shifter network between antennas and radio frequency chains.This paper investigates HBF optimization with different hybrid architectures in broadband point-to-point mmWave MIMO systems.The joint hybrid architecture and beamforming optimization problem is divided into two sub-problems.First,we transform the spectral efficiency maximization problem into an equivalent weighted mean squared error minimization problem,and propose an algorithm based on the manifold optimization method for the hybrid beamformer with a fixed hybrid architecture.The overlapped subarray architecture which balances well between hardware costs and system performance is investigated.We further propose an algorithm to dynamically partition antenna subarrays and combine it with the HBF optimization algorithm.Simulation results are presented to demonstrate the performance improvement of our proposed algorithms.
文摘A method of space-time block coding (STBC) system based on adaptive beamforming of cyclostationarity signal algorithm is proposed.The method uses cyclostationarity of signals to achieve adaptive beamforming,then constructs a pair of low correlated transmit beams based on beamform estimation of multiple component signals of uplink.Using these two selected transmit beams,signals encoded by STBC are transmitted to achieve diversity gain and beamforming gain at the same time,and increase the signal to noise ratio (SNR) of downlink.With simple computation and fast convergence performance,the proposed scheme is applicable for time division multiple access (TDMA) wireless communication operated in a complex interference environment.Simulation results show that the proposed scheme has better performance than conventional STBC,and can obtain a gain of about 5 dB when the bit error ratio (BER) is 10-4.
基金The National Natural Science Foundation of China(No.61001103)the National Science and Technology Major Project of China (No.2008ZX03003-005)the National Basic Research Program ofChina(973 Program) (No.2007CB310603)
文摘In downlink cellular multiple users in multiple cells systems using beams, the should cooperate to generate beams to improve the spectrum efficiency. A mathematical model for the multi-cell multi-user downlink transmission is established, and the gradients of the variables including beamfonning filters, receiving filters and transmitting power are calculated. Then, a gradient-project-based cooperative beamforming scheme is proposed in which each user iteratively adjusts bearnforming variables in the direction of the gradients and projects onto feasible spaces. The information exchange protocol needed to support the scheme is also described. Simulation results show that the proposed scheme can achieve an average spectral efficiency of about 5 bit/( s · Hz · cell). The results show that cooperative beamforming can improve the spectrum efficiency of the cellular systems.
文摘Detection and localization of acoustic events in an environment are important to protect the military and civilian installations. While there are finite paths of wave propagation in simple or low reverberant environments, in complex environments (e.g. a complex urban environment) obstacles such as terrain or buildings introduce multipath propagations, reflections and diffractions which make source localization challenging. Therefore, numeric results of simulated models (simplified and Fort Benning urban models) of 3D complex environments can highly help in real applications. Some of the conventional beamformer algorithms have been used in order to localize point sound source. Analyzing results shows that MRCB beamformer has better performance than others in this issue and its accuracy superiority is more than 3 m in simplified urban model and 5 m in Fort Benning urban model with respect to the SOC. Moreover, due to possible uncertainties between the numerical model and the actual environment such as squall effect, temperature gradient etc., sensitivity of the beamformers to temperature gradient is investigated which shows higher robustness of SOC beamformer than the MRCB beamformer. According to the results, due to gradient temperature uncertainty the accuracy degradation of the SOC is about 1m while in MRCB it alters from 0.5 m to 20 m approximately at all SNRs. COMSOL Multiphysics has been used to numerically simulate the environment of wave propagation.
文摘In this paper, we present a theoretical analysis of the output signal-to-interference-plus-noise ratio (SINR) for eigen-space beamformers so as to investigate the performance degradation caused by large pointing errors. For the sake of reducing such performance loss, a robust scheme, which consists of two cascaded signal processors, is proposed for adaptive beamformers. In the first stage, an algorithm possessing time efficiency is developed to adjust the direc-tion-of-arrival (DOA) estimate of the desired source. Based the achieved DOA estimate, the second stage provides an eigenspace beamformer combined with the spatial derivative constraints (SDC) to further mitigate the cancellation of the desired signal. Analysis and numerical results have been conducted to verify that the proposed scheme yields a better robustness against pointing errors than the conventional approaches.
基金supported by Aeronautical Science Foundation of China(2017ZC52021)the Fundamental Research Funds for the Central Universities(NS2017066)+1 种基金the Foundation of Graduate Innovation Center in NUAA(kfjj20171501)China Postdoctoral Science Foundation Funded Project(2015M581791)
文摘Millimeter wave(mmWave) communications of unmanned aerial vehicles(UAVs) have drawn dramatic attentions for its flexibility on a variety of applications.Recently,channel tracking base on the spatial features has been proposed to solve the problem of beam misalignments due to the UAV navigation.However,unstable beam pointing caused by the non-ideal beam tracking environment may impact the performance of mmWave systems significantly.In this paper,an improved beamforming method is presented to overcome this shortcoming.Firstly,the effect of the beam deviation is analyzed through the establishment of the equivalent data rate.Then,combining the quantification of spatial angle and the improved orthogonal matching pursuit(OMP) algorithm,an optimized beam corresponding to the beam deviation is obtained.Simulation results show that the optimized beam of the proposed approach can effectively improve the spectral efficiency without improving the complexity when the beam pointing is unstable.
文摘Unmanned aerial vehicle(UAV)has been widely used in many fields and is arousing global attention.As the resolution of the equipped sensors in the UAV becomes higher and the tasks become more complicated,much higher data rate and longer communication range are required in the foreseeable future.As the millimeter-wave(mm Wave)band can provide more abundant frequency resources than the microwave band,much higher achievable rate can be guaranteed to support UAV services such as video surveillance,hotspot coverage,and emergency communications,etc.The flexible mm Wave beamforming can be used to overcome the high path loss caused by the long propagation distance.In this paper,we study three typical application scenarios for mm Wave-UAV communications,namely communication terminal,access point,and backbone link.We present several key enabling techniques for UAV communications,including beam tracking,multi-beam forming,joint Tx/Rx beam alignment,and full-duplex relay techniques.We show the coupling relation between mm Wave beamforming and UAV positioning for mm Wave-UAV communications.Lastly,we summarize the challenges and research directions of mm Wave-UAV communications in detail.