期刊文献+
共找到3,316篇文章
< 1 2 166 >
每页显示 20 50 100
Measured dynamic load distribution within the in situ axlebox bearing of high-speed trains under polygonal wheel–rail excitation
1
作者 Yu Hou Xi Wang +4 位作者 Jiaqi Wei Menghua Zhao Wei Zhao Huailong Shi Chengyu Sha 《Railway Engineering Science》 EI 2024年第4期444-460,共17页
The dynamic load distribution within in-service axlebox bearings of high-speed trains is crucial for the fatigue reliability assessment and forward design of axlebox bearings. This paper presents an in situ measuremen... The dynamic load distribution within in-service axlebox bearings of high-speed trains is crucial for the fatigue reliability assessment and forward design of axlebox bearings. This paper presents an in situ measurement of the dynamic load distribution in the four rows of two axlebox bearings on a bogie wheelset of a high-speed train under polygonal wheel–rail excitation. The measurement employed an improved strain-based method to measure the dynamic radial load distribution of roller bearings. The four rows of two axlebox bearings on a wheelset exhibited different ranges of loaded zones and different means of distributed loads. Besides, the mean value and standard deviation of measured roller–raceway contact loads showed non-monotonic variations with the frequency of wheel–rail excitation. The fatigue life of the four bearing rows under polygonal wheel–rail excitation was quantitatively predicted by compiling the measured roller–raceway contact load spectra of the most loaded position and considering the load spectra as input. 展开更多
关键词 High-speed train Axlebox bearing dynamic load distribution In situ measurement Polygonal wheel–rail excitation
下载PDF
Nonlinear Dynamics Behaviors of a Rotor Roller Bearing System with Radial Clearances and Waviness Considered 被引量:15
2
作者 王黎钦 崔立 +1 位作者 郑德志 古乐 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2008年第1期86-96,共11页
A rotor system supported by roller beatings displays very complicated nonlinear behaviors due to nonlinear Hertzian contact forces, radial clearances and bearing waviness. This paper presents nonlinear bearing forces ... A rotor system supported by roller beatings displays very complicated nonlinear behaviors due to nonlinear Hertzian contact forces, radial clearances and bearing waviness. This paper presents nonlinear bearing forces of a roller bearing under four-dimensional loads and establishes 4-DOF dynamics equations of a rotor roller bearing system. The methods of Newmark-β and of Newton-Laphson are used to solve the nonlinear equations. The dynamics behaviors of a rigid rotor system are studied through the bifurcation, the Poincar è maps, the spectrum diagrams and the axis orbit of responses of the system. The results show that the system is liable to undergo instability caused by the quasi-periodic bifurcation, the periodic-doubling bifurcation and chaos routes as the rotational speed increases. Clearances, outer race waviness, inner race waviness, roller waviness, damping, radial forces and unbalanced forces-all these bring a significant influence to bear on the system stability. As the clearance increases, the dynamics behaviors become complicated with the number and the scale of instable regions becoming larger. The vibration frequencies induced by the roller bearing waviness and the orders of the waviness might cause severe vibrations. The system is able to eliminate non-periodic vibration by reasonable choice and optimization of the parameters. 展开更多
关键词 roller bearing rotor system nonlinear bearing force dynamics behaviors BIFURCATION CHAOS
下载PDF
Analysis of dynamic characteristics of self-aligning ball bearing 被引量:1
3
作者 袁丁 蒋书运 《Journal of Southeast University(English Edition)》 EI CAS 2010年第3期410-414,共5页
A dynamics model of the self-aligning ball bearing is proposed based on the Jones-Harris method (JHM), and a computer program is developed to solve the equations by using the Newton-Raphson method. A parametric anal... A dynamics model of the self-aligning ball bearing is proposed based on the Jones-Harris method (JHM), and a computer program is developed to solve the equations by using the Newton-Raphson method. A parametric analysis of the centrifugal force and the gyroscopic moment, the contact loads, the contact angles, the radial deformation and the radial stiffness is carried out. The analytical results show that the applied loads and the rotational speed are two main factors that can influence the distributions of the contact loads and values of the contact angles. The centrifugal force and the gyroscopic moment increase with the increase in the rotational speed, resulting in the decrease of the inner raceway contact load and the increase of the outer raceway contact load. The outer raceway contact angle increases under the centrifugal force; on the contrary, the inner raceway contact angle decreases. Furthermore, the differences between the inner and the outer contact angles increase with the increase in the rotational speed. The higher rotational speed results in the decrease in radial stiffness for the self-aligning ball bearing, and the raceway curvature coefficient, to some extent, also influences the radial stiffness. 展开更多
关键词 self-aligning ball bearing dynamic characteristics Jones-Harris method (JHM) Newton-Raphson method bearing stiffness
下载PDF
Effects of Floating Ring Bearing Manufacturing Tolerance Clearances on the Dynamic Characteristics for Turbocharger 被引量:16
4
作者 WANG Longkai BIN Guangfu +1 位作者 LI Xuejun ZHANG Xuefeng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第3期530-540,共11页
The inner and outer oil film dynamic characteristic coefficients of floating ring bearings(FRBs) change due to the manufacturing tolerance of the floating ring, journal and intermediate, which leads to high-speed tu... The inner and outer oil film dynamic characteristic coefficients of floating ring bearings(FRBs) change due to the manufacturing tolerance of the floating ring, journal and intermediate, which leads to high-speed turbocharger's vibration too large and even causes nonlinear vibration accident. However, the investigation of floating ring bearing manufacturing tolerance clearance on the rotordynamic characteristics is less at present. In order to study the influence law of inner and outer clearance on turbocharger vibration, the rotor dynamic motion equations of turbocharger supported in FRBs are derived by analyzing the size relations between floating ring, journal and intermediate for the inner and outer oil film clearances, the time transient response analysis for combination of FRBs clearance are developed. A realistic turbocharger is taken as a research object, the FE model of the turbocharger with FRBs is modeled. Under the conditions of four kinds of limit state bearing clearances for inner and outer oil film, the nonlinear transient analyses are performed based on the established FE dynamic models of the nonlinear rotor-FRBs system applied incentive combinations of gravity and unbalance force, respectively. From the waterfall, the simulation results show that the speed for the appearance of fractional frequency is not identical and the amplitude magnitude is different under the four kinds of bearing manufacturing tolerance limit clearances, and fractional frequency does not appear in the turbocharger and the amplitude is minimum under the ODMin/IDMax bearing manufacturing tolerance clearances. The turbocharger vibration is reduced by controlling the manufacturing tolerance clearance combinations of FRBs, which is helpful for the dynamic design and production-manufacturing of high-speed turbocharger. 展开更多
关键词 TURBOCHARGER floating ring bearing manufacturing tolerance clearance nonlinear transient analysis dynamic characteristics
下载PDF
Application of Computational Fluid Dynamics and Fluid Structure Interaction Techniques for Calculating the 3D Transient Flow of Journal Bearings Coupled with Rotor Systems 被引量:20
5
作者 LI Qiang YU Guichang +1 位作者 LIU Shulian ZHENG Shuiying 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第5期926-932,共7页
Journal bearings are important parts to keep the high dynamic performance of rotor machinery. Some methods have already been proposed to analysis the flow field of journal bearings, and in most of these methods simpli... Journal bearings are important parts to keep the high dynamic performance of rotor machinery. Some methods have already been proposed to analysis the flow field of journal bearings, and in most of these methods simplified physical model and classic Reynolds equation are always applied. While the application of the general computational fluid dynamics (CFD)-fluid structure interaction (FSI) techniques is more beneficial for analysis of the fluid field in a journal bearing when more detailed solutions are needed. This paper deals with the quasi-coupling calculation of transient fluid dynamics of oil film in journal bearings and rotor dynamics with CFD-FSI techniques. The fluid dynamics of oil film is calculated by applying the so-called "dynamic mesh" technique. A new mesh movement approacb is presented while the dynamic mesh models provided by FLUENT are not suitable for the transient oil flow in journal bearings. The proposed mesh movement approach is based on the structured mesh. When the joumal moves, the movement distance of every grid in the flow field of bearing can be calculated, and then the update of the volume mesh can be handled automatically by user defined function (UDF). The journal displacement at each time step is obtained by solving the moving equations of the rotor-bearing system under the known oil film force condition. A case study is carried out to calculate the locus of the journal center and pressure distribution of the journal in order to prove the feasibility of this method. The calculating results indicate that the proposed method can predict the transient flow field of a journal bearing in a rotor-bearing system where more realistic models are involved. The presented calculation method provides a basis for studying the nonlinear dynamic behavior of a general rotor-bearing system. 展开更多
关键词 mesh movement transient flow computational fluid dynamics (CFD) fluid-structure interaction (FSI) journal bearing
下载PDF
DYNAMIC BEHAVIOR OF A CRACKED FLEXIBLE ROTOR SUPPORTED ON JOURNAL BEARINGS 被引量:6
6
作者 Zheng Jibing Meng Guang(Institute of Vibratian Engineering, Northwestern PolytechnicalUniversity, Xi’an, China, 710072) 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 1997年第1期28-35,共8页
The dynamic behavior of a cracked flexible rotor supported on three kinds ofjournal bearings is presented. Numerical experiments show that nonsynchronous responseswill happen due to the rotor crack, and the amplitudes... The dynamic behavior of a cracked flexible rotor supported on three kinds ofjournal bearings is presented. Numerical experiments show that nonsynchronous responseswill happen due to the rotor crack, and the amplitudes of the nonsynchronous componentsbecome larger with the increase of crack. On the other hand, the fluid forces of journalbearings can suppress the nonsynchronous response. The (1/2) × or (3/2) × harmoniccomponent rarely appears for small crack near the rotating speed ratio Ω = 2Ωc or Ω =(2/3)Ωc. In the case of supercritical rotating speed, the additional 0× harmonic component is increased as the crack increases. The bearing parameters affect greatly the occur-rence of the nonsynchronous responses by means of exerting innuence on the critical spedand the stabi1ity of the system. 展开更多
关键词 rotor dynamics cracks rotors journal bearings dynamic characteristics BEHAVIOR
下载PDF
Dynamic Responses of Rotor Drops onto Double-decker Catcher Bearing 被引量:5
7
作者 ZHU Yili JIN Chaowu XU Longxiang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第1期104-113,共10页
In an active magnetic bearing (AMB) system, the catcher bearings (CBs) are indispensable to protect the rotor and stator in case the magnetic bearings fail. Most of the former researches associated with CBs are ma... In an active magnetic bearing (AMB) system, the catcher bearings (CBs) are indispensable to protect the rotor and stator in case the magnetic bearings fail. Most of the former researches associated with CBs are mainly focused on the dynamic responses of the rotor drops onto traditional single-decker catcher bearings (SDCBs). But because of the lower limited speed of SDCB, it cannot withstand the ultra high speed rotation after rotor drop. In this paper, based on the analysis of the disadvantages of SDCBs, a new type of double-decker catcher bearings (DDCBs) is proposed to enhance the CB work performance in AMB system. In order to obtain thc accurate rotor movements before AMB failure, the dynamic characteristics of AMB are theoretically derived. Detailed simulation models containing rigid rotor model, contact model between rotor and inner race, DDCB force model as well as heating model after rotor drop are established. Then, using those established models the dynamic responses of rotor drops onto DDCBs and SDCBs are respectively simulated. The rotor orbits, contact forces, spin speeds of various parts and heat energies after AMB failure are mainly analyzed. The simulation results show that DDCBs can effectively improve the CBs limit rotational speed and reduce the following vibrations, impacts and heating. Finally, rotor drop experiments choosing different types of CBs are carried out on the established AMB test bench. Rotor orbits, inner race temperatures as well as the rotating speeds of both inner race and intermediate races after rotor drop are synchronously measured. The experiment results verify the advantages of DDCB and the correctness of theoretical analysis. The studies provide certain theoretical and experimental references for the application of DDCBs in AMB system. 展开更多
关键词 active magnetic bearing dynamic stiffness rotor drop double-decker catcher bearing single-decker catcher bearing heating
下载PDF
Grey Relation between Nonlinear Characteristic and Dynamic Uncertainty of Rolling Bearing Friction Torque 被引量:13
8
作者 XIA Xintao WANG Zhongyu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第2期244-249,共6页
The rolling bearing friction torque which is characterized by its uncertainty and nonlinearity affects heavily the dynamic performance of a system such as missiles, spacecrafts and radars, etc. It is difficult to use ... The rolling bearing friction torque which is characterized by its uncertainty and nonlinearity affects heavily the dynamic performance of a system such as missiles, spacecrafts and radars, etc. It is difficult to use the classical statistical theory to evaluate the dynamic evaluation of the rolling bearing friction torque for the lack of prior information about both probability distribution and trends. For this reason, based on the information poor system theory and combined with the correlation dimension in chaos theory, the concepts about the mean of the dynamic fluctuant range (MDFR) and the grey relation are proposed to resolve the problem about evaluating the nonlinear characteristic and the dynamic uncertainty of the rolling bearing friction torque. Friction torque experiments are done for three types of the rolling bearings marked with HKTA, HKTB and HKTC separately; meantime, the correlation dimension and MDFR are calculated to describe the nonlinear characteristic and the dynamic uncertainty of the friction torque, respectively. And the experiments reveal that there is a certain grey relation between the nonlinear characteristic and the dynamic uncertainty of the rolling bearing friction torque, viz. MDFR will become the nonlinear increasing trend with the correlation dimension increasing. Under the condition of fewer characteristic data and the lack of prior information about both probability distribution and trends, the unitive evaluation for the nonlinear characteristic and the dynamic uncertainty of the rolling bearing friction torque is realized with the grey confidence level of 87.7%-96.3%. 展开更多
关键词 rolling bearing friction torque time series correlation dimension mean of dynamic fluctuant range (MDFR) information poor system theory
下载PDF
Characteristics of the Main Journal Bearings of an Engine Based on Non-linear Dynamics 被引量:6
9
作者 NI Guangjian ZHANG Junhong CHENG Xiaoming 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第5期755-759,共5页
Many simple nonlinear main journal bearing models have been studied theoretically, but the connection to existing engineering system has not been equally investigated. The consideration of the characteristics of engin... Many simple nonlinear main journal bearing models have been studied theoretically, but the connection to existing engineering system has not been equally investigated. The consideration of the characteristics of engine main journal bearings may provide a prediction of the bearing load and lubrication. Due to the strong non-linear features in bearing lubrication procedure, it is difficult to predict those characteristics. A non-linear dynamic model is described for analyzing the characteristics of engine main journal bearings. Components such as crankshaft, main journals and con rods are found by applying the finite element method. Non-linear spring/dampers are introduced to imitate the constraint and supporting functions provided by the main bearing and oil film. The engine gas pressure is imposed as excitation on the model via the engine piston, con rod, etc. The bearing reaction force is calculated over one engine cycle, and meanwhile, the oil film thickness and pressure distribution are obtained based on Reynolds differential equation. It can be found that the maximum bearing reaction force always occurs when the maximum cylinder pressure arises in the cylinder adjacent to that bearing. The simulated minimum oil film thickness, which is 3 μm, demonstrates the reliability of the main journal bearings. This non-linear dynamic analysis may save computing efforts of engine main bearing design and also is of good precision and close connection to actual engine main journal bearing conditions. 展开更多
关键词 non-linear dynamics ENGINE main journal bearings
下载PDF
Dynamic Stability Analysis of Cages in High-Speed Oil-Lubricated Angular Contact Ball Bearings 被引量:13
10
作者 刘秀海 邓四二 滕弘飞 《Transactions of Tianjin University》 EI CAS 2011年第1期20-27,共8页
To investigate the cage stability of high-speed oil-lubricated angular contact ball bearings, a dynamic model of cages is developed on the basis of Gupta’s and Meeks’ work. The model can simulate the cage motion und... To investigate the cage stability of high-speed oil-lubricated angular contact ball bearings, a dynamic model of cages is developed on the basis of Gupta’s and Meeks’ work. The model can simulate the cage motion under oil lubrication with all six degrees of freedom. Particularly, the model introduces oil-film damping and hysteresis damping, and deals with the collision contact as imperfect elastic contact. In addition, the effects of inner ring rotational speed, the ratio of pocket clearance to guiding clearance and applied load on the cage stability are investigated by simulating the cage motion with the model. The results can provide a theoretical basis for the design of ball bearing parameters. 展开更多
关键词 dynamic analysis high-speed angular contact ball bearing CAGE STABILITY SIMULATION
下载PDF
Nonlinear dynamics of flexible rotor system supported on fixed-tilting pad combination journal bearing 被引量:4
11
作者 吕延军 张永芳 +1 位作者 于杨冰 虞烈 《Journal of Central South University》 SCIE EI CAS 2011年第3期610-617,共8页
Based on the Reynolds equation with Reynolds boundary conditions, the Castelli method was employed to solve the Reynolds equation for oil lubrication upon bearings. By doing so, a profile of nonlinear oil film force o... Based on the Reynolds equation with Reynolds boundary conditions, the Castelli method was employed to solve the Reynolds equation for oil lubrication upon bearings. By doing so, a profile of nonlinear oil film force of single-pad journal bearings is established. According to the structure of combination journal bearings, nonlinear oil film force of combination journal bearing is obtained by retrieval, interpolation and assembly techniques. As for symmetrical flexible Jeffcott rotor systems supported by combination journal bearings, the nonlinear motions of the center of the rotor are calculated by the self-adaptive Runge-Kutta method and Poincar6 mapping with different rotational speeds. The numerical results show that the system performance is slightly better when the pivot ratio changes from 0.5 to 0.6, and reveals nonlinear phenomena of periodic, period-doubing, quasi-periodic motion, etc. 展开更多
关键词 fixed-tilting pad combination journal bearings nonlinear analysis dynamicS BIFURCATION
下载PDF
Dynamic analysis of traction motor in a locomotive considering surface waviness on races of a motor bearing 被引量:10
12
作者 Yuqing Liu Zaigang Chen +1 位作者 Wei Li Kaiyun Wang 《Railway Engineering Science》 2021年第4期379-393,共15页
The traction motor is the power source of the locomotive.If the surface waviness occurs on the races of the motor bearing,it will cause abnormal vibration and noise,accelerate fatigue and wear,and seriously affect the... The traction motor is the power source of the locomotive.If the surface waviness occurs on the races of the motor bearing,it will cause abnormal vibration and noise,accelerate fatigue and wear,and seriously affect the stability and safety of the traction power transmission.In this paper,an excitation model coupling the time-varying displacement and contact stiffness excitations is adopted to investigate the effect of the surface waviness of the motor bearing on the traction motor under the excitation from the locomotive-track coupled system.The detailed mechanical power transmission path and the internal/external excitations(e.g.,wheel–rail interaction,gear mesh,and internal interactions of the rolling bearing)of the locomotive are comprehensively considered to provide accurate dynamic loads for the traction motor.Effects of the wavenumber and amplitude of the surface waviness on the traction motor and its neighbor components of the locomotive are investigated.The results indicate that controlling the amplitude of the waviness and avoiding the wavenumber being an integer multiple of the number of the rollers are helpful for reducing the abnormal vibration and noise of the traction motor. 展开更多
关键词 Rolling bearing Traction motor WAVINESS Vibration responses Vehicle-track coupled dynamics
下载PDF
Dynamic torsional response of pre-strained end bearing pile embedded in pre-strained isotropic saturated soil medium 被引量:3
13
作者 胡文韬 夏唐代 张智卿 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第12期1521-1534,共14页
The influence of initial strain state on the dynamic response of an end bearing pile embedded in isotropic saturated soil is investigated through the linearized theory of small elastic perturbation superposed on large... The influence of initial strain state on the dynamic response of an end bearing pile embedded in isotropic saturated soil is investigated through the linearized theory of small elastic perturbation superposed on largely stressed bodies. The governing equations for soil, based on Blot's poroelasticity theory, are derived in the cylindrical coordinates, and the pile is modeled by using the one-dimensional elastic theory. The analytical solutions of pile impedance, frequency response of both twist angle and time history of velocity response are obtained by using of separation of variables technique. Finally, a parametric study of the influence of initial strains on the torsional impedance, twist angle, and velocity response at the top of the pile is carried out. 展开更多
关键词 initial deformation torsional dynamic response end bearing pile poroelastic saturated soil
下载PDF
Analysis on Dynamic Performance for Active Magnetic Bearing-Rotor System 被引量:2
14
作者 YANHui-yan WANGXi-ping 《Journal of Shanghai University(English Edition)》 CAS 2001年第3期234-237,共4页
In the application of active magnetic bearings (AMB), one of the key problems to be solved is the safety and stability in the sense of rotor dynamics. The project related to the present paper deals with the method fo... In the application of active magnetic bearings (AMB), one of the key problems to be solved is the safety and stability in the sense of rotor dynamics. The project related to the present paper deals with the method for analyzing bearing rotor systems with high rotation speed and specially supported by active magnetic bearings, and studies its rotor dynamics performance, including calculation of the natural frequencies with their distribution characteristics, and the critical speeds of the system. One of the targets of this project is to formulate a theory and method valid for the analysis of the dynamic performance of the active magnetic bearing rotor system by combining the traditional theory and method of rotor dynamics with the analytical theory and design method based on modern control theory of the AMB system. 展开更多
关键词 active magnetic bearing rotor system rotor dynamics critical speed STABILITY STIFFNESS DAMPING
下载PDF
A Study on the Dynamic Characteristics of the Damping Capillary Type Spherical Hydrostatic Bearing 被引量:2
15
作者 陈卓如 潘社卫 +1 位作者 张守礼 金朝铭 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 1995年第2期24-27,共4页
The dynamic mathematical model of the damping capillary type spherical hydrostatic bearing is established firstly,then the dynamic characteristics of the hydrostatic bearing are analysized in detail.By means of theore... The dynamic mathematical model of the damping capillary type spherical hydrostatic bearing is established firstly,then the dynamic characteristics of the hydrostatic bearing are analysized in detail.By means of theoretical reasoning,a design guide that relates to J0,the static stiffness of the hydrostatic bearing,is put forward to guarantee that the hydrostatic bearing possesses the excellent dynamic characteristics.At last,the effect of the structural parameters on J0 is studied. 展开更多
关键词 ss:Damping CAPILLARY type SPHERICAL HYDROSTATIC bearing dynamic characteristics HYDROSTATIC stiffness
下载PDF
Quasi Dynamic Calculation of Local Stiffness of Angular Contact Ball Bearings 被引量:2
16
作者 Zhen-Huan Ye Chuan-Wei Zhang +2 位作者 Le Gu Li-Qin Wang De-Zhi Zheng 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2013年第3期22-26,共5页
In order to describe the performance of thin wall bearing on rotor system more accurate,the simplified model of bearing local stiffness was proposed. The load distribution and local contact deformation in angular cont... In order to describe the performance of thin wall bearing on rotor system more accurate,the simplified model of bearing local stiffness was proposed. The load distribution and local contact deformation in angular contact ball bearings were calculated using quasi dynamic calculation method. Based on the relationship of local load to contact deformation,the calculation model of local bearing stiffness was subsequently built to get radial and axial components of local stiffness. Effects of external loads on the local bearing stiffness were analyzed. The results showed that local stiffness in bearings is symmetric to the axis of radial load,and its value has a maximum on the symmetry axis along the radial load direction. External radial and axial load have different effects on local bearing stiffness. 展开更多
关键词 local stiffness angular contact ball bearings quasi dynamic method
下载PDF
Dynamics of Rotor Drop on New Type Catcher Bearing 被引量:1
17
作者 金超武 朱益利 +2 位作者 徐龙祥 蒋磊 周来水 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第1期70-77,共8页
In an active magnetic bearing(AMB)system,the catcher bearings(CBs)are indispensable to protect the rotor and stator in case the magnetic bearings fail or overload.A new CB structure composed of two ball bearings is in... In an active magnetic bearing(AMB)system,the catcher bearings(CBs)are indispensable to protect the rotor and stator in case the magnetic bearings fail or overload.A new CB structure composed of two ball bearings is introduced.Detailed simulation models containing contact model between rotor and inner race,double-decker catcher bearing(DDCB)model as well as single-decker catcher bearing(SDCB)model are established using multibody dynamics simulation software MSC.ADAMS.Then,using those established models,the rotor orbits and the contact forces between rotor and inner race are simulated respectively after rotor drop on DDCBs and SDCBs.The simulation result shows that the rotor vibration range using DDCBs is significantly smaller than that using SDCBs;the maximum contact forces drop about 15%—27% compared with the contact forces using SDCBs.Finally,the test bench for the rotor drop experiments is built and the rotor drop experiments for different types of CBs are carried out.Labview data acquisition system is utilized to collect the displacement of rotor and the rotating frequencies of both inner race and intermediate races after rotor drop.The experimental results are comparatively analyzed,and the conclusion that DDCB can help to reduce vibration amplitude and collision force is obtained.The studies can provide certain theoretical and experimental references for the application of DDCBs in AMB system. 展开更多
关键词 rotor drop double-decker catcher bearing active magnetic bearing dynamicS
下载PDF
STUDY ON THE COUPLED ELECTROMECHANICAL DYNAMICS OF ROTOR SYSTEM EQUIPPED WITH MAGNETIC BEARINGS 被引量:1
18
作者 ZhangGang ZhangJiansheng +5 位作者 LiSongsheng YangXinzhou WuJianfeng WangXiping YuLie XieYoubai 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2004年第1期93-96,共4页
The influences of thrust magnetic bearing and journal tilt on dynamiccharacteristics of rotor system are studied mainly. The Outcome shows that the influences ofcoupling effects of thrust magnetic bearing and tilt of ... The influences of thrust magnetic bearing and journal tilt on dynamiccharacteristics of rotor system are studied mainly. The Outcome shows that the influences ofcoupling effects of thrust magnetic bearing and tilt of journal on critical rotational speeds ofsystem are very large, and the stability of system reduces greatly. That shows it is important thatthe influence of coupling effects of thrust and radial magnetic bearings due to the rotor tiltingmust be considered in the study of rotor-magnetic bearings system dynamic characteristics, and alsoshows it is important that the rotor is mounted and debugged in ideal alignment of magneticbearings. 展开更多
关键词 Thrust magnetic bearing Journal tilt dynamic characteristics
下载PDF
Influence of Structural Parameters of Turbocharger Floating Bearing on Its Dynamic Characteristic Coefficients 被引量:1
19
作者 Junsheng Zhao Yuantong Gu +1 位作者 Shengxian Yi Xuelong Lu 《Journal of Beijing Institute of Technology》 EI CAS 2017年第2期183-190,共8页
The structure parameters in an actual industrial production have a great influence on the coefficient of supercharger floating bearing dynamic characteristics,but there has been little systematic study so far.In this ... The structure parameters in an actual industrial production have a great influence on the coefficient of supercharger floating bearing dynamic characteristics,but there has been little systematic study so far.In this paper,the influence of structural parameters of the turbocharger floating bearing on its dynamic characteristic coefficientsis systematically investigated based on the theories of hydrodynamic lubrication and tribology.The influence of clearance ratio on eccentricity and the influence of internal to external radius ratios,and Sommerfeld number were analyzed.A new formula of responding characteristics of the oil film force caused by the displacement or velocity disturbance was deduced near an equilibrium in the steady state.Applying the newly developed formula,the dynamic characteristic was studied for floating bearings.Regularity for change of oil film stiffness and damping was analyzed with the structural parameters of floating bearing such as radius ratios and eccentricity.It has been found that the clearance ratio increases with eccentricity when the radius ratio is unchanged.The eccentricity decreases with the internal to external radius ratio of floating rings when the clearance ratio is constant.The absolute value of total principal stiffness and total main damping decrease with the clearance ratio and radius ratio of floating rings when the total cross damping is stable.The results and findings in this paper can contribute to nonlinear dynamics designs of turbocharger rotor-bearing systems. 展开更多
关键词 TURBOCHARGER floating bearing structure parameters dynamic characteristic coefficient
下载PDF
Nonlinear dynamic behaviors of ball bearing rotor system 被引量:1
20
作者 王黎钦 崔立 +1 位作者 郑德志 古乐 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2009年第2期284-288,共5页
Nonlinear forces and moments caused by ball bearing were calculated based on relationship of displacement and deflection and quasi-dynamic model of bearing.Five-DOF dynamic equations of rotor supported by ball bearing... Nonlinear forces and moments caused by ball bearing were calculated based on relationship of displacement and deflection and quasi-dynamic model of bearing.Five-DOF dynamic equations of rotor supported by ball bearings were estimated.The Newmark-β method and Newton-Laphson method were used to solve the equations.The dynamic characteristics of rotor system were studied through the time response,the phase portrait,the Poincar?maps and the bifurcation diagrams.The results show that the system goes through the quasi-periodic bifurcation route to chaos as rotate speed increases and there are several quasi-periodic regions and chaos regions.The amplitude decreases and the dynamic behaviors change as the axial load of ball bearing increases;the initial contact angle of ball bearing affects dynamic behaviors of the system obviously.The system can avoid non-periodic vibration by choosing structural parameters and operating parameters reasonably. 展开更多
关键词 ball bearing rotor system nonlinear bearing force dynamic behaviors
下载PDF
上一页 1 2 166 下一页 到第
使用帮助 返回顶部