In this paper,we propose a wireless channel testing method and construct the test platform for the Gbps broadband wireless system.The proposed method is implemented to evaluate the transmission performance according t...In this paper,we propose a wireless channel testing method and construct the test platform for the Gbps broadband wireless system.The proposed method is implemented to evaluate the transmission performance according to the acquired field test results.The results have shown that the proposed channel test algorithm is valid and efficient,which can continuously show the variation of system throughput,frame loss rate and latency.展开更多
Aviation turbine engine oils require excellent thermal-oxidative stability because of their high-temperature environments.High-temperature bearing deposit testing is a mandatory method for measuring the thermal-oxidat...Aviation turbine engine oils require excellent thermal-oxidative stability because of their high-temperature environments.High-temperature bearing deposit testing is a mandatory method for measuring the thermal-oxidative performance of aviation lubricant oils,and the relevant apparatus was improved in the present study.Two different commercial aviation turbine engine oils were tested,one with standard performance(known as the SL oil)and the other with high thermal stability,and their thermal-oxidative stability characteristics were evaluated.After 100 h of high-temperature bearing testing,the SL oil was analyzed by using various analytical techniques to investigate its thermal-oxidative process in the bearing test,with its thermal-oxidative degradation mechanism also being discussed.The results indicate that the developed high-temperature bearing apparatus easily meets the test requirements of method 3410.1 in standard FED-STD-791D.The viscosity and total acid number(TAN)of the SL oil increased with the bearing test time,and various deposits were produced in the bearing test,with the micro-particles of the carbon deposits being sphere-like,rod-like,and sheet-like in appearance.The antioxidant additives in the oil were consumed very rapidly in the first 30 h of the bearing test,with N-phenyl-1-naphthylamine being consumed faster than dioctyldiphenylamine.Overall,the oil thermal-oxidative process involves very complex physical and chemical mechanisms.展开更多
The spherical plain bearing test bench is a necessary detecting equipment in the research process of self?lubricating spherical plain bearings. The varying environmental temperatures cause the thermal deformation of t...The spherical plain bearing test bench is a necessary detecting equipment in the research process of self?lubricating spherical plain bearings. The varying environmental temperatures cause the thermal deformation of the wear?depth detecting system of bearing test benches and then a ect the accuracy of the wear?depth detecting data. However, few researches about the spherical plain bearing test benches can be found with the implementation of the detect?ing error compensation. Based on the self?made modular spherical plain bearing test bench, two main causes of ther?mal errors, the friction heat of bearings and the environmental temperature variation, are analysed. The thermal errors caused by the friction heat of bearings are calculated, and the thermal deformation of the wear?depth detecting sys?tem caused by the varying environmental temperatures is detected. In view of the above results, the environmental temperature variation is the main cause of the two error factors. When the environmental temperatures rise is 10.3 °C, the thermal deformation is approximately 0.01 mm. In addition, the comprehensive compensating model of the thermal error of the wear?depth detecting system is built by multiple linear regression(MLR) and time series analysis. Compared with the detecting data of the thermal errors, the comprehensive compensating model has higher fitting precision, and the maximum residual is only 1 μm. A comprehensive compensating model of the thermal error of the wear?depth detecting system is proposed, which provides a theoretical basis for the improvement of the real?time wear?depth detecting precision of the spherical plain bearing test bench.展开更多
The paper presents the methodology and results of measurement designed to determine the effect of the rolling element separator (cage) at the frictional moment in ball bearings, The measurement was carried out on fo...The paper presents the methodology and results of measurement designed to determine the effect of the rolling element separator (cage) at the frictional moment in ball bearings, The measurement was carried out on four groups on bearing with different cages. Measurements were carried out on torque-meter STPM, a device that has been designed and manufactured at Kielce University of Technology. The measurement results showed that the type of cage used in ball bearings has a significant impact on the frictional moment. In addition, the results also confirm that the size of the curvature ratio and the accuracy of the races shape have a significant impact on the frictional moment.展开更多
In order to better understand the mechanical properties of graded crushed rocks (GCRs) and to optimize the relevant design, a numerical test method based on the particle flow modeling technique PFC2D is developed fo...In order to better understand the mechanical properties of graded crushed rocks (GCRs) and to optimize the relevant design, a numerical test method based on the particle flow modeling technique PFC2D is developed for the California bearing ratio (CBR) test on GGRs. The effects of different testing conditions and micro-mechanical parameters used in the model on the CBR numerical results have been systematically studied. The reliability of the numerical technique is verified. The numerical results suggest that the influences of the loading rate and Poisson's ratio on the CBR numerical test results are not significant. As such, a loading rate of 1.0-3.0 mm/min, a piston diameter of 5 cm, a specimen height of 15 cm and a specimen diameter of 15 cm are adopted for the CBR numerical test. The numerical results reveal that the GBR values increase with the friction coefficient at the contact and shear modulus of the rocks, while the influence of Poisson's ratio on the GBR values is insignificant. The close agreement between the CBR numerical results and experimental results suggests that the numerical simulation of the CBR values is promising to help assess the mechanical properties of GGRs and to optimize the grading design. Be- sides, the numerical study can provide useful insights on the mesoscopic mechanism.展开更多
The behavior of soluble salts contained in the municipal solid waste incinerator(MSWI) ash significantly affects the strength development and hardening reaction when stabilized with cement.The present study focuses on...The behavior of soluble salts contained in the municipal solid waste incinerator(MSWI) ash significantly affects the strength development and hardening reaction when stabilized with cement.The present study focuses on the compaction and strength behavior of mixed specimens of cement and MSWI ash.A series of indices such as unconfined compressive strength,split tensile strength,California bearing ratio(CBR) and pH value was examined.Prior to this,the specimens were cured for 7 d,14 d,and 28 d.The test results depict that the maximum dry density(MDD) decreases and the optimum moisture content(OMC)increases with the addition of cement.The test results also reveal that the cement increases the strength of the mixed specimens.Thus,the combination of MSWI ash and cement can be used as a lightweight filling material in different structures like embankment and road construction.展开更多
基金supported by International Scientific and Technological Cooperation Program from MOST.(No.S2010GR0902)the Science and Technology Innovation Program of Shanghai(No.09dz2201100)+1 种基金Equipment Functional Development of Technological Innovation Projects from CAS(No.YG2010060)Research Fund of National Mobile Communications Research Laboratory,Southeast University(No.2009A04)
文摘In this paper,we propose a wireless channel testing method and construct the test platform for the Gbps broadband wireless system.The proposed method is implemented to evaluate the transmission performance according to the acquired field test results.The results have shown that the proposed channel test algorithm is valid and efficient,which can continuously show the variation of system throughput,frame loss rate and latency.
基金supported by the National Key Research and Development Program of China(2022YFB3809005)by SINOPEC(120060-6,121027,and 122042).
文摘Aviation turbine engine oils require excellent thermal-oxidative stability because of their high-temperature environments.High-temperature bearing deposit testing is a mandatory method for measuring the thermal-oxidative performance of aviation lubricant oils,and the relevant apparatus was improved in the present study.Two different commercial aviation turbine engine oils were tested,one with standard performance(known as the SL oil)and the other with high thermal stability,and their thermal-oxidative stability characteristics were evaluated.After 100 h of high-temperature bearing testing,the SL oil was analyzed by using various analytical techniques to investigate its thermal-oxidative process in the bearing test,with its thermal-oxidative degradation mechanism also being discussed.The results indicate that the developed high-temperature bearing apparatus easily meets the test requirements of method 3410.1 in standard FED-STD-791D.The viscosity and total acid number(TAN)of the SL oil increased with the bearing test time,and various deposits were produced in the bearing test,with the micro-particles of the carbon deposits being sphere-like,rod-like,and sheet-like in appearance.The antioxidant additives in the oil were consumed very rapidly in the first 30 h of the bearing test,with N-phenyl-1-naphthylamine being consumed faster than dioctyldiphenylamine.Overall,the oil thermal-oxidative process involves very complex physical and chemical mechanisms.
基金Supported by National Natural Science Foundation of China(Grant No.51405422)Hebei Provincial Natural Science Foundation of China(Grant No.E2015203113)Technological Innovation Fund of Aviation Industry of China(Grant No.2014E00468R)
文摘The spherical plain bearing test bench is a necessary detecting equipment in the research process of self?lubricating spherical plain bearings. The varying environmental temperatures cause the thermal deformation of the wear?depth detecting system of bearing test benches and then a ect the accuracy of the wear?depth detecting data. However, few researches about the spherical plain bearing test benches can be found with the implementation of the detect?ing error compensation. Based on the self?made modular spherical plain bearing test bench, two main causes of ther?mal errors, the friction heat of bearings and the environmental temperature variation, are analysed. The thermal errors caused by the friction heat of bearings are calculated, and the thermal deformation of the wear?depth detecting sys?tem caused by the varying environmental temperatures is detected. In view of the above results, the environmental temperature variation is the main cause of the two error factors. When the environmental temperatures rise is 10.3 °C, the thermal deformation is approximately 0.01 mm. In addition, the comprehensive compensating model of the thermal error of the wear?depth detecting system is built by multiple linear regression(MLR) and time series analysis. Compared with the detecting data of the thermal errors, the comprehensive compensating model has higher fitting precision, and the maximum residual is only 1 μm. A comprehensive compensating model of the thermal error of the wear?depth detecting system is proposed, which provides a theoretical basis for the improvement of the real?time wear?depth detecting precision of the spherical plain bearing test bench.
文摘The paper presents the methodology and results of measurement designed to determine the effect of the rolling element separator (cage) at the frictional moment in ball bearings, The measurement was carried out on four groups on bearing with different cages. Measurements were carried out on torque-meter STPM, a device that has been designed and manufactured at Kielce University of Technology. The measurement results showed that the type of cage used in ball bearings has a significant impact on the frictional moment. In addition, the results also confirm that the size of the curvature ratio and the accuracy of the races shape have a significant impact on the frictional moment.
基金supported by the Program for New Century Excellent Talents in University (NCET-08-0749)Fundamental Research Funds for the Central Universities (CHD2012JC054)
文摘In order to better understand the mechanical properties of graded crushed rocks (GCRs) and to optimize the relevant design, a numerical test method based on the particle flow modeling technique PFC2D is developed for the California bearing ratio (CBR) test on GGRs. The effects of different testing conditions and micro-mechanical parameters used in the model on the CBR numerical results have been systematically studied. The reliability of the numerical technique is verified. The numerical results suggest that the influences of the loading rate and Poisson's ratio on the CBR numerical test results are not significant. As such, a loading rate of 1.0-3.0 mm/min, a piston diameter of 5 cm, a specimen height of 15 cm and a specimen diameter of 15 cm are adopted for the CBR numerical test. The numerical results reveal that the GBR values increase with the friction coefficient at the contact and shear modulus of the rocks, while the influence of Poisson's ratio on the GBR values is insignificant. The close agreement between the CBR numerical results and experimental results suggests that the numerical simulation of the CBR values is promising to help assess the mechanical properties of GGRs and to optimize the grading design. Be- sides, the numerical study can provide useful insights on the mesoscopic mechanism.
文摘The behavior of soluble salts contained in the municipal solid waste incinerator(MSWI) ash significantly affects the strength development and hardening reaction when stabilized with cement.The present study focuses on the compaction and strength behavior of mixed specimens of cement and MSWI ash.A series of indices such as unconfined compressive strength,split tensile strength,California bearing ratio(CBR) and pH value was examined.Prior to this,the specimens were cured for 7 d,14 d,and 28 d.The test results depict that the maximum dry density(MDD) decreases and the optimum moisture content(OMC)increases with the addition of cement.The test results also reveal that the cement increases the strength of the mixed specimens.Thus,the combination of MSWI ash and cement can be used as a lightweight filling material in different structures like embankment and road construction.