期刊文献+
共找到4,921篇文章
< 1 2 247 >
每页显示 20 50 100
A Hybrid Approach for Predicting the Remaining Useful Life of Bearings Based on the RReliefF Algorithm and Extreme Learning Machine
1
作者 Sen-Hui Wang Xi Kang +3 位作者 Cheng Wang Tian-Bing Ma Xiang He Ke Yang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1405-1427,共23页
Accurately predicting the remaining useful life(RUL)of bearings in mining rotating equipment is vital for mining enterprises.This research aims to distinguish the features associated with the RUL of bearings and propo... Accurately predicting the remaining useful life(RUL)of bearings in mining rotating equipment is vital for mining enterprises.This research aims to distinguish the features associated with the RUL of bearings and propose a prediction model based on these selected features.This study proposes a hybrid predictive model to assess the RUL of rolling element bearings.The proposed model begins with the pre-processing of bearing vibration signals to reconstruct sixty time-domain features.The hybrid model selects relevant features from the sixty time-domain features of the vibration signal by adopting the RReliefF feature selection algorithm.Subsequently,the extreme learning machine(ELM)approach is applied to develop a predictive model of RUL based on the optimal features.The model is trained by optimizing its parameters via the grid search approach.The training datasets are adjusted to make them most suitable for the regression model using the cross-validation method.The proposed hybrid model is analyzed and validated using the vibration data taken from the public XJTU-SY rolling element-bearing database.The comparison is constructed with other traditional models.The experimental test results demonstrated that the proposed approach can predict the RUL of bearings with a reliable degree of accuracy. 展开更多
关键词 bearing degradation remaining useful life estimation RReliefF feature selection extreme learning machine
下载PDF
Changing trends of clinicopathologic features and survival duration after surgery for gastric cancer in Northeast China 被引量:2
2
作者 Zhao Zhai Zi-Yu Zhu +11 位作者 Xi-Liang Cong Bang-Ling Han Jia-Liang Gao Xin Yin Yu Zhang Sheng-Han Lou Tian-Yi Fang Yi-Min Wang Chun-Feng Li Xue-Feng Yu Yan Ma Ying-Wei Xue 《World Journal of Gastrointestinal Oncology》 SCIE CAS 2020年第10期1119-1132,共14页
BACKGROUND Through analyzing the data from a single institution in Northeast China,this study revealed the possible clinicopathologic characteristics that influence the prognosis of patients with gastric cancer(GC).AI... BACKGROUND Through analyzing the data from a single institution in Northeast China,this study revealed the possible clinicopathologic characteristics that influence the prognosis of patients with gastric cancer(GC).AIM To evaluate the changing trends of clinicopathologic features and survival duration after surgery in patients with GC in Northeast China,which is a highprevalence area of GC.METHODS The study analyzed the difference in clinicopathologic features and survival duration after surgery of 5887 patients who were histologically diagnosed with GC at the Harbin Medical University Cancer Hospital.The study mainly analyzed the data in three periods,2000 to 2004(Phase 1),2005 to 2009(Phase 2),and 2010 to 2014(Phase 3).RESULTS Over time,the postoperative survival rate significantly increased from 2000 to 2014.In the past 15 years,compared with Phases 1 and 2,the tumor size was smaller in Phase 3(P<0.001),but the proportion of high-medium differentiated tumors increased(P<0.001).The proportion of early GC gradually increased from 3.9%to 14.4%(P<0.001).A surprising improvement was observed in the mean number of retrieved lymph nodes,ranging from 11.4 to 27.5(P<0.001).The overall 5-year survival rate increased from 24%in Phase 1 to 43.8%in Phase 3.Through multivariate analysis,it was found that age,tumor size,histologic type,tumor-node-metastasis stage,depth of invasion,lymph node metastasis,surgical approach,local infiltration,radical extent,number of retrieved lymph nodes,and age group were independent risk factors that influenced the prognosis of patients with GC.CONCLUSION The clinical features of GC in Northeast China changed during the observation period.The increasing detection of early GC and more standardized surgical treatment effectively prolonged lifetimes. 展开更多
关键词 Gastric cancer Clinicopathologic features SURVIVAL Time trends EPIDEMIOLOGY GASTRECTOMY
下载PDF
SPATIAL/TEMPORAL FEATURES OF DROUGHT/FLOOD IN FUJIAN FOR THE PAST FOUR DECADES
3
作者 游立军 高建芸 +2 位作者 邓自旺 周晓兰 张容焱 《Journal of Tropical Meteorology》 SCIE 2007年第1期45-48,共4页
41 a (1961 - 2001) seasonal Z index series of 25 representative weather stations are investigated by virtue of EOF, FFT, continuous wavelet transformation (CWT) and orthogonai wavelet transformation (OWT). It sh... 41 a (1961 - 2001) seasonal Z index series of 25 representative weather stations are investigated by virtue of EOF, FFT, continuous wavelet transformation (CWT) and orthogonai wavelet transformation (OWT). It shows that: (1) Fujian drought/flood (DF) has a significant 2 - 3a cycle for the periods 1965 - 1975 and 1990's; (2) the pattern, which represents the opposite DF trend between the southern and northem parts, has la and 3 - 4a cycles since the middle of 1980's; (3) EOF3, which denotes the reverse change between the middle-west region and other areas, has significant 1 - 2a cycle for the period from 1985 to 1998 and 9 - 13a cycle since 1980s; (4) there is an obvious drought trend for the last 40a (especially in the 1990's), which is more outstanding in the south (east) than in the north (west); (5) the 1960's and 1980's are in relatively wet phases and the 1970's and 1990's are in drought spells. 展开更多
关键词 Fujian drought and flood spatial/time features Eof wavelet analysis
下载PDF
Self-Sensing TDR for Bearing Failure Detection of CFRP Laminate Fastener Hole with Particular Reference to the Effect of Fasteners
4
作者 Akira Todoroki Keisuke Ohara +2 位作者 Yoshihiro Mizutani Yoshiro Suzuki Ryosuke Matsuzaki 《Open Journal of Composite Materials》 2015年第3期60-69,共10页
Carbon fiber reinforced polymer composites (CFRP) have been applied to aerospace and automobile structures. For many CFRP structures, mechanical metallic fasteners are usually adopted. For the fasteners used in intern... Carbon fiber reinforced polymer composites (CFRP) have been applied to aerospace and automobile structures. For many CFRP structures, mechanical metallic fasteners are usually adopted. For the fasteners used in internal structures such as a wing box, the damage to the CFRP structures around fastener holes is visually quite difficult to find. A simple method to find the damage around fastener holes is required. In this study a self-sensing time domain reflectometry (TDR) method is newly applied to detect bearing failure around the fastener holes of CFRP structures. A microstrip-line method is generally used to create a transmission line. When the transmission line is mounted near the metallic fasteners, they may affect the impedance of the transmission line. In this study, the effect of distance between the fasteners and the transmission line was numerically investigated using a finite difference time domain analysis method. After finding the appropriate distance, experiments were performed to detect the bearing failure around a fastener hole. The experiments showed the performance of the self-sensing TDR for detecting bearing failure. 展开更多
关键词 Composites Time Domain REFLECTOMETRY SELF-SENSING bearing Failure Fasteners Monitoring
下载PDF
Fault Diagnosis Method of Rolling Bearing Based on MSCNN-LSTM
5
作者 Chunming Wu Shupeng Zheng 《Computers, Materials & Continua》 SCIE EI 2024年第6期4395-4411,共17页
Deep neural networks have been widely applied to bearing fault diagnosis systems and achieved impressive success recently.To address the problem that the insufficient fault feature extraction ability of traditional fa... Deep neural networks have been widely applied to bearing fault diagnosis systems and achieved impressive success recently.To address the problem that the insufficient fault feature extraction ability of traditional fault diagnosis methods results in poor diagnosis effect under variable load and noise interference scenarios,a rolling bearing fault diagnosis model combining Multi-Scale Convolutional Neural Network(MSCNN)and Long Short-Term Memory(LSTM)fused with attention mechanism is proposed.To adaptively extract the essential spatial feature information of various sizes,the model creates a multi-scale feature extraction module using the convolutional neural network(CNN)learning process.The learning capacity of LSTM for time information sequence is then used to extract the vibration signal’s temporal feature information.Two parallel large and small convolutional kernels teach the system spatial local features.LSTM gathers temporal global features to thoroughly and painstakingly mine the vibration signal’s characteristics,thus enhancing model generalization.Lastly,bearing fault diagnosis is accomplished by using the SoftMax classifier.The experiment outcomes demonstrate that the model can derive fault properties entirely from the initial vibration signal.It can retain good diagnostic accuracy under variable load and noise interference and has strong generalization compared to other fault diagnosis models. 展开更多
关键词 bearing fault diagnosis convolutional neural network short-long-term memory network feature fusion
下载PDF
Intelligent recognition and information extraction of radar complex jamming based on time-frequency features
6
作者 PENG Ruihui WU Xingrui +3 位作者 WANG Guohong SUN Dianxing YANG Zhong LI Hongwen 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第5期1148-1166,共19页
In modern war,radar countermeasure is becoming increasingly fierce,and the enemy jamming time and pattern are changing more randomly.It is challenging for the radar to efficiently identify jamming and obtain precise p... In modern war,radar countermeasure is becoming increasingly fierce,and the enemy jamming time and pattern are changing more randomly.It is challenging for the radar to efficiently identify jamming and obtain precise parameter information,particularly in low signal-to-noise ratio(SNR)situations.In this paper,an approach to intelligent recognition and complex jamming parameter estimate based on joint time-frequency distribution features is proposed to address this challenging issue.Firstly,a joint algorithm based on YOLOv5 convolutional neural networks(CNNs)is proposed,which is used to achieve the jamming signal classification and preliminary parameter estimation.Furthermore,an accurate jamming key parameters estimation algorithm is constructed by comprehensively utilizing chi-square statistical test,feature region search,position regression,spectrum interpolation,etc.,which realizes the accurate estimation of jamming carrier frequency,relative delay,Doppler frequency shift,and other parameters.Finally,the approach has improved performance for complex jamming recognition and parameter estimation under low SNR,and the recognition rate can reach 98%under−15 dB SNR,according to simulation and real data verification results. 展开更多
关键词 complex jamming recognition time frequency feature convolutional neural network(CNN) parameter estimation
下载PDF
Mapping winter wheat using phenological feature of peak before winter on the North China Plain based on time-series MODIS data 被引量:17
7
作者 TAO Jian-bin WU Wen-bin +2 位作者 ZHOU Yong WANG Yu JIANG Yan 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第2期348-359,共12页
By employing the unique phenological feature of winter wheat extracted from peak before winter (PBW) and the advantages of moderate resolution imaging spectroradiometer (MODIS) data with high temporal resolution a... By employing the unique phenological feature of winter wheat extracted from peak before winter (PBW) and the advantages of moderate resolution imaging spectroradiometer (MODIS) data with high temporal resolution and intermediate spatial resolution, a remote sensing-based model for mapping winter wheat on the North China Plain was built through integration with Landsat images and land-use data. First, a phenological window, PBW was drawn from time-series MODIS data. Next, feature extraction was performed for the PBW to reduce feature dimension and enhance its information. Finally, a regression model was built to model the relationship of the phenological feature and the sample data. The amount of information of the PBW was evaluated and compared with that of the main peak (MP). The relative precision of the mapping reached up to 92% in comparison to the Landsat sample data, and ranged between 87 and 96% in comparison to the statistical data. These results were sufficient to satisfy the accuracy requirements for winter wheat mapping at a large scale. Moreover, the proposed method has the ability to obtain the distribution information for winter wheat in an earlier period than previous studies. This study could throw light on the monitoring of winter wheat in China by using unique phenological feature of winter wheat. 展开更多
关键词 time-series MODIS data phenological feature peak before wintering winter wheat mapping
下载PDF
Discussion on the feature of strong earthquake: Orderly distribution in time, space and intensity before the Western Kunlun Mountain Pass M=8.1 earthquake
8
作者 张晓东 张永仙 +1 位作者 吕梅梅 余素荣 《Acta Seismologica Sinica(English Edition)》 CSCD 2003年第6期598-605,共8页
In the paper, the feature of strong earthquake orderly distribution in time, space and intensity before the Western Kunlun Mountain Pass M=8.1 earthquake is preliminarily studied. The modulation and triggering factors... In the paper, the feature of strong earthquake orderly distribution in time, space and intensity before the Western Kunlun Mountain Pass M=8.1 earthquake is preliminarily studied. The modulation and triggering factors such as the earth rotation, earth tides are analyzed. The results show that: the giant earthquakes with the magnitude more than 8 occurred about every 24 years and the earthquakes with the magnitude more than 7 about every 7 years in Chinese mainland. The Western Kunlun Mountain M=8.1 earthquake exactly occurred at the expected time; The spatial distance show approximately the same distances between each two swarms. The earth rotation, earth tide, sun tide and sun magnetic field have played a role of modulation and triggering in the intensity. At last, the condi-tions for earthquake generation and occurrence are also discussed. 展开更多
关键词 giant earthquake time space and intensity in order FEATURE
下载PDF
Introducing driving-force information increases the predictability of the North Atlantic Oscillation
9
作者 PAN Xinnong WANG Geli YANG Peicai 《Atmospheric and Oceanic Science Letters》 CSCD 2019年第5期329-336,共8页
The North Atlantic Oscillation(NAO)is the most prominent mode of atmospheric variability in the Northern Hemisphere.Because of the close relationship between the NAO and regional climate in Eurasia,North Atlantic,and ... The North Atlantic Oscillation(NAO)is the most prominent mode of atmospheric variability in the Northern Hemisphere.Because of the close relationship between the NAO and regional climate in Eurasia,North Atlantic,and North America,improving the prediction skill for the NAO has attracted much attention.Previous studies that focused on the predictability of the NAO were often based upon simulations by climate models.In this study,the authors took advantage of Slow Feature Analysis to extract information on the driving forces from daily NAO index and introduced it into phase-space reconstruction.By computing the largest Lyapunov exponent,the authors found that the predictability of daily NAO index shows a significant increase when its driving force signal is considered.Furthermore,the authors conducted a short-term prediction for the NAO by using a global prediction model for chaotic time series that incorporated the driving-force information.Results showed that the prediction skill for the NAO can be largely increased.In addition,results from wavelet analysis suggested that the driving-force signal of the NAO is associated with three basic drivers:the annual cycle(1.02 yr),the quasi-biennial oscillation(QBO)(2.44 yr);and the solar cycle(11.6 yr),which indicates the critical roles of the QBO and solar activities in the predictability of the NAO. 展开更多
关键词 North Atlantic Oscillation slow feature analysis driving force characteristics time series prediction
下载PDF
基于OFMD和FSC的滚动轴承复合故障诊断
10
作者 唐贵基 张龙 +2 位作者 薛贵 徐振丽 王晓龙 《振动与冲击》 EI CSCD 北大核心 2024年第15期160-168,共9页
针对滚动轴承的复合故障诊断问题,深入研究了一种基于优化特征模态分解和快速谱相关的复合故障诊断方法。首先,通过理论分析,提出脉冲能量因子指标来实现特征模态分解的参数选择以及最优分量的选取;然后,基于快速谱相关原理设计谱相关... 针对滚动轴承的复合故障诊断问题,深入研究了一种基于优化特征模态分解和快速谱相关的复合故障诊断方法。首先,通过理论分析,提出脉冲能量因子指标来实现特征模态分解的参数选择以及最优分量的选取;然后,基于快速谱相关原理设计谱相关相对强度曲线和改进快速谱相关图,用于确定不同故障调制后对应的最优载波,对最优载波进行包络处理,从而分离轴承的复合故障特征,最终实现复合故障的准确性诊断。通过模拟故障试验和工程案例分析结果表明,该文所提方法相比于经验模态分解能够有效滤除噪声干扰,具有良好的鲁棒性,同时,避免了解卷积方法设定参数的缺陷,且与Autogram方法相比,能够有效分离复合故障特征,避免复合故障特征成分耦合。 展开更多
关键词 滚动轴承 复合故障 特征分离 特征模态分解 快速谱相关
下载PDF
Grey Relation between Nonlinear Characteristic and Dynamic Uncertainty of Rolling Bearing Friction Torque 被引量:13
11
作者 XIA Xintao WANG Zhongyu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第2期244-249,共6页
The rolling bearing friction torque which is characterized by its uncertainty and nonlinearity affects heavily the dynamic performance of a system such as missiles, spacecrafts and radars, etc. It is difficult to use ... The rolling bearing friction torque which is characterized by its uncertainty and nonlinearity affects heavily the dynamic performance of a system such as missiles, spacecrafts and radars, etc. It is difficult to use the classical statistical theory to evaluate the dynamic evaluation of the rolling bearing friction torque for the lack of prior information about both probability distribution and trends. For this reason, based on the information poor system theory and combined with the correlation dimension in chaos theory, the concepts about the mean of the dynamic fluctuant range (MDFR) and the grey relation are proposed to resolve the problem about evaluating the nonlinear characteristic and the dynamic uncertainty of the rolling bearing friction torque. Friction torque experiments are done for three types of the rolling bearings marked with HKTA, HKTB and HKTC separately; meantime, the correlation dimension and MDFR are calculated to describe the nonlinear characteristic and the dynamic uncertainty of the friction torque, respectively. And the experiments reveal that there is a certain grey relation between the nonlinear characteristic and the dynamic uncertainty of the rolling bearing friction torque, viz. MDFR will become the nonlinear increasing trend with the correlation dimension increasing. Under the condition of fewer characteristic data and the lack of prior information about both probability distribution and trends, the unitive evaluation for the nonlinear characteristic and the dynamic uncertainty of the rolling bearing friction torque is realized with the grey confidence level of 87.7%-96.3%. 展开更多
关键词 rolling bearing friction torque time series correlation dimension mean of dynamic fluctuant range (MDFR) information poor system theory
下载PDF
Singularity analysis of Jeffcott rotor-magnetic bearing with time delays 被引量:2
12
作者 XU Xiu-yan JIANG Wei-hua 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2012年第4期419-427,共9页
A Jeffcott rotor-magnetic bearing with time delays is investigated in this paper. Firstly, it is found that the characteristic equation of the system satisfies the conditions of the singularity. Secondly, the center m... A Jeffcott rotor-magnetic bearing with time delays is investigated in this paper. Firstly, it is found that the characteristic equation of the system satisfies the conditions of the singularity. Secondly, the center manifold reduction and normal form are employed to study the bifurcation from simple zero and zero-purely imaginary singularities. The results of this paper will help to understand the influence of the time delays in feedback loop on the dynamics of rotor-magnetic bearing system. 展开更多
关键词 Jeffcott rotor-magnetic bearing time delay SINGULARITY normal form.
下载PDF
AUTO-EXTRACTING TECHNIQUE OF DYNAMIC CHAOS FEATURES FOR NONLINEAR TIME SERIES 被引量:6
13
作者 CHEN Guo 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第4期524-529,共6页
The main purpose of nonlinear time series analysis is based on the rebuilding theory of phase space, and to study how to transform the response signal to rebuilt phase space in order to extract dynamic feature informa... The main purpose of nonlinear time series analysis is based on the rebuilding theory of phase space, and to study how to transform the response signal to rebuilt phase space in order to extract dynamic feature information, and to provide effective approach for nonlinear signal analysis and fault diagnosis of nonlinear dynamic system. Now, it has already formed an important offset of nonlinear science. But, traditional method cannot extract chaos features automatically, and it needs man's participation in the whole process. A new method is put forward, which can implement auto-extracting of chaos features for nonlinear time series. Firstly, to confirm time delay r by autocorrelation method; Secondly, to compute embedded dimension m and correlation dimension D; Thirdly, to compute the maximum Lyapunov index λmax; Finally, to calculate the chaos degree Dch of Poincare map, and the non-circle degree Dnc and non-order degree Dno of quasi-phase orbit. Chaos features extracting has important meaning to fault diagnosis of nonlinear system based on nonlinear chaos features. Examples show validity of the proposed method. 展开更多
关键词 Nonlinear time series analysis Chaos Feature extracting Fault diagnosis
下载PDF
Analysis of OSA Syndrome from PPG Signal Using CART-PSO Classifier with Time Domain and Frequency Domain Features 被引量:1
14
作者 N.Kins Burk Sunil R.Ganesan B.Sankaragomathi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2019年第2期351-375,共25页
Obstructive Sleep Apnea(OSA)is a respiratory syndrome that occurs due to insufficient airflow through the respiratory or respiratory arrest while sleeping and sometimes due to the reduced oxygen saturation.The aim of ... Obstructive Sleep Apnea(OSA)is a respiratory syndrome that occurs due to insufficient airflow through the respiratory or respiratory arrest while sleeping and sometimes due to the reduced oxygen saturation.The aim of this paper is to analyze the respiratory signal of a person to detect the Normal Breathing Activity and the Sleep Apnea(SA)activity.In the proposed method,the time domain and frequency domain features of respiration signal obtained from the PPG device are extracted.These features are applied to the Classification and Regression Tree(CART)-Particle Swarm Optimization(PSO)classifier which classifies the signal into normal breathing signal and sleep apnea signal.The proposed method is validated to measure the performance metrics like sensitivity,specificity,accuracy and F1 score by applying time domain and frequency domain features separately.Additionally,the performance of the CART-PSO(CPSO)classification algorithm is evaluated through comparing its measures with existing classification algorithms.Concurrently,the effect of the PSO algorithm in the classifier is validated by varying the parameters of PSO. 展开更多
关键词 OBSTRUCTIVE sleep APNEA photoplethysmogram SIGNAL time DOMAIN features frequency DOMAIN features classification and regression tree CLASSIFIER particle swarm optimization algorithm.
下载PDF
Application of Improved Deep Auto-Encoder Network in Rolling Bearing Fault Diagnosis 被引量:1
15
作者 Jian Di Leilei Wang 《Journal of Computer and Communications》 2018年第7期41-53,共13页
Since the effectiveness of extracting fault features is not high under traditional bearing fault diagnosis method, a bearing fault diagnosis method based on Deep Auto-encoder Network (DAEN) optimized by Cloud Adaptive... Since the effectiveness of extracting fault features is not high under traditional bearing fault diagnosis method, a bearing fault diagnosis method based on Deep Auto-encoder Network (DAEN) optimized by Cloud Adaptive Particle Swarm Optimization (CAPSO) was proposed. On the basis of analyzing CAPSO and DAEN, the CAPSO-DAEN fault diagnosis model is built. The model uses the randomness and stability of CAPSO algorithm to optimize the connection weight of DAEN, to reduce the constraints on the weights and extract fault features adaptively. Finally, efficient and accurate fault diagnosis can be implemented with the Softmax classifier. The results of test show that the proposed method has higher diagnostic accuracy and more stable diagnosis results than those based on the DAEN, Support Vector Machine (SVM) and the Back Propagation algorithm (BP) under appropriate parameters. 展开更多
关键词 Fault Diagnosis ROLLING bearing Deep Auto-Encoder NETWORK CAPSO Algorithm Feature Extraction
下载PDF
Emotional Speech Synthesis Based on Prosodic Feature Modification 被引量:2
16
作者 Ling He Hua Huang Margaret Lech 《Engineering(科研)》 2013年第10期73-77,共5页
The synthesis of emotional speech has wide applications in the field of human-computer interaction, medicine, industry and so on. In this work, an emotional speech synthesis system is proposed based on prosodic featur... The synthesis of emotional speech has wide applications in the field of human-computer interaction, medicine, industry and so on. In this work, an emotional speech synthesis system is proposed based on prosodic features modification and Time Domain Pitch Synchronous OverLap Add (TD-PSOLA) waveform concatenative algorithm. The system produces synthesized speech with four types of emotion: angry, happy, sad and bored. The experiment results show that the proposed emotional speech synthesis system achieves a good performance. The produced utterances present clear emotional expression. The subjective test reaches high classification accuracy for different types of synthesized emotional speech utterances. 展开更多
关键词 EMOTIONAL SPEECH Synthesis Prosodic features Time Domain PITCH SYNCHRONOUS OVERLAP ADD
下载PDF
Predicting Reliability and Remaining Useful Life of Rolling Bearings Based on Optimized Neural Networks 被引量:1
17
作者 Tiantian Liang Runze Wang +2 位作者 Xuxiu Zhang Yingdong Wang Jianxiong Yang 《Structural Durability & Health Monitoring》 EI 2023年第5期433-455,共23页
In this study,an optimized long short-term memory(LSTM)network is proposed to predict the reliability and remaining useful life(RUL)of rolling bearings based on an improved whale-optimized algorithm(IWOA).The multi-do... In this study,an optimized long short-term memory(LSTM)network is proposed to predict the reliability and remaining useful life(RUL)of rolling bearings based on an improved whale-optimized algorithm(IWOA).The multi-domain features are extracted to construct the feature dataset because the single-domain features are difficult to characterize the performance degeneration of the rolling bearing.To provide covariates for reliability assessment,a kernel principal component analysis is used to reduce the dimensionality of the features.A Weibull distribution proportional hazard model(WPHM)is used for the reliability assessment of rolling bearing,and a beluga whale optimization(BWO)algorithm is combined with maximum likelihood estimation(MLE)to improve the estimation accuracy of the model parameters of the WPHM,which provides the data basis for predicting reliability.Considering the possible gradient explosion by training the rolling bearing lifetime data and the difficulties in selecting the key network parameters,an optimized LSTM network called the improved whale optimization algorithm-based long short-term memory(IWOA-LSTM)network is proposed.As IWOA better jumps out of the local optimization,the fitting and prediction accuracies of the network are correspondingly improved.The experimental results show that compared with the whale optimization algorithm-based long short-term memory(WOA-LSTM)network,the reliability prediction and RUL prediction accuracies of the rolling bearing are improved by the proposed IWOA-LSTM network. 展开更多
关键词 Rolling bearing prediction feature extraction long short-term memory network improve whale optimization algorithm
下载PDF
Generator Unit Fault Diagnosis Using the Frequency Slice Wavelet Transform Time-frequency Analysis Method 被引量:9
18
作者 DUAN Chendong GAO Qiang XU Xianfeng 《中国电机工程学报》 EI CSCD 北大核心 2013年第32期I0014-I0014,16,共1页
为了提取有效的故障特征,提出了基于频率切片小波变换时频分解的故障特征分离提取方法。先对信号进行频率切片小波变换获取其时频分布,然后根据信号的能量分布特点选择时频区域,再以较高的时频分辨率对选择的时频区域进一步细化分析... 为了提取有效的故障特征,提出了基于频率切片小波变换时频分解的故障特征分离提取方法。先对信号进行频率切片小波变换获取其时频分布,然后根据信号的能量分布特点选择时频区域,再以较高的时频分辨率对选择的时频区域进一步细化分析,以突出隐含在信号中的时频特征,在此基础上分割出含有故障特征时频区域,再通过滤波和逆变换重构分离出有效的故障特征。仿真实验和工程应用表明,这种方法可从噪声信号中分离出有效的特征分量,在发电机组故障特征提取时取得了较好的效果。 展开更多
关键词 频率分析 小波变换 时频分析方法 故障诊断 发电机组 切片 振动信号 非平稳
下载PDF
SELF-ALIGNING EVEN LOAD MECHANISM OF MULTI-ROW BEARINGS OF LARGE STRIP ROLLING MILL
19
作者 HUANG Qingxue LI Yugui +5 位作者 SHEN Guangxian CHEN Zhanfu SHU Xuedao SHI Rong ZHA0 Hongwei CHEN Buquan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第2期246-250,共5页
The load distribution of multi-row bearings of large strip rolling mill is fully analyzed by 3D contact boundary element method (BEM). It is found out that bearings are frequently worn out due to serious uneven load... The load distribution of multi-row bearings of large strip rolling mill is fully analyzed by 3D contact boundary element method (BEM). It is found out that bearings are frequently worn out due to serious uneven load on the multi-row rollers. The constraint mechanism of the previous rolling system is found to be unreasonable by theoretical analysis on heavy machinery structure. A mechanism of self-aligning even load for workroll bearing of 2 050 mm hot rolling mill of Baoshan I&S Co. is developed. This device is manufactured with particular regard to the structure of 2 050 mm hot rolling mill mentioned above. Hence, uneven load on multi-row bearings is greatly relieved and their lives are remarkably prolonged. Meanwhile, theoretical analysis and on-spot tests prove the rationality and validity of the device. 展开更多
关键词 Strip rolling mill Multi-row bearings Loading features
下载PDF
Deep Residual Joint Transfer Strategy for Cross-Condition Fault Diagnosis of Rolling Bearings 被引量:1
20
作者 Songjun Han Zhipeng Feng 《Journal of Dynamics, Monitoring and Diagnostics》 2023年第1期42-51,共10页
Rolling bearings are key components of the drivetrain in wind turbines,and their health is critical to wind turbine operation.In practical diagnosis tasks,the vibration signal is usually interspersed with many disturb... Rolling bearings are key components of the drivetrain in wind turbines,and their health is critical to wind turbine operation.In practical diagnosis tasks,the vibration signal is usually interspersed with many disturbing components,and the variation of operating conditions leads to unbalanced data distribution among different conditions.Although intelligent diagnosis methods based on deep learning have been intensively studied,it is still challenging to diagnose rolling bearing faults with small amounts of samples.To address the above issue,we introduce the deep residual joint transfer strategy method for the cross-condition fault diagnosis of rolling bearings.One-dimensional vibration signals are pre-processed by overlapping feature extraction techniques to fully extract fault characteristics.The deep residual network is trained in training tasks with sufficient samples,for fault pattern classification.Subsequently,three transfer strategies are used to explore the generalizability and adaptability of the pre-trained models to the data distribution in target tasks.Among them,the feature transferability between different tasks is explored by model transfer,and it is validated that minimizing data differences of tasks through a dual-stream adaptation structure helps to enhance generalization of the models to the target tasks.In the experiments of rolling bearing faults with unbalanced data conditions,localized faults of motor bearings and planet bearings are successfully identified,and good fault classification results are achieved,which provide guidance for the cross-condition fault diagnosis of rolling bearings with small amounts of training data. 展开更多
关键词 fault diagnosis feature transferability rolling bearing transfer strategy wind turbine
下载PDF
上一页 1 2 247 下一页 到第
使用帮助 返回顶部