This study focuses on treating Guadua angustifolia bamboo fibers to enhance their properties for reinforcement applications in composite materials.Chemical(alkali)and physical(dry etching plasma)treatments were used s...This study focuses on treating Guadua angustifolia bamboo fibers to enhance their properties for reinforcement applications in composite materials.Chemical(alkali)and physical(dry etching plasma)treatments were used separately to augment compatibility of Guadua angustifolia fibers with various composite matrices.The influence of these treatments on the fibers’performance,chemical composition,and surface morphology were analyzed.Statistical analysis indicated that alkali treatments reduced the tensile modulus of elasticity and strength of fibers by up to 40%and 20%,respectively,whereas plasma treatments maintain the fibers’mechanical performance.FTIR spectroscopy revealed significant alterations in chemical composition due to alkali treatments,while plasma-treated fibers showed minimal changes.Surface examination through Scanning Electron Microscopy(SEM)revealed post-treatment modifications in both cases;alkali treatments served as a cleanser,eliminating lignin and hemicellulose from the fiber surface,whereas plasma treatments also produce rough surfaces.These results validate the impact of the treatments on the fiber mechanical performance,which opens up possibilities for using Guadua angustifolia fibers as an alternative reinforcement in composite manufacturing.展开更多
Green composites made from bamboo fibers and biodegradable resins were fabricated with press molding.On the basis of the Weibull distribution and the weakest-link theory,the statistical strength and distribution of ba...Green composites made from bamboo fibers and biodegradable resins were fabricated with press molding.On the basis of the Weibull distribution and the weakest-link theory,the statistical strength and distribution of bamboo fiber were analyzed,and the tensile strength of green composites was also investigated.The result confirms that the tensile statistical strength of fiber fits well with two-parameter Weibull distribution.In addition,the tensile strength of bamboo fiber reinforced composites is about 330 MPa with the fiber volume fraction of 70%.This value is close to or higher than that of other natural fiber reinforced green composites.展开更多
Dendrocalamus farinosus and Phyllostachys heterocycla bamboo logs were subjected to a novel treat- ment process for the preparation of bamboo fiber mats (BFMs), and the obtained BFM were used to fabricate bamboo fib...Dendrocalamus farinosus and Phyllostachys heterocycla bamboo logs were subjected to a novel treat- ment process for the preparation of bamboo fiber mats (BFMs), and the obtained BFM were used to fabricate bamboo fiber reinforced composite (BFRC). We studied the mechanical properties of the BFRCs manufactured from the mats with and without bamboo nodes. The pres- ence of nodes in BFM greatly reduced tensile strength, compressive strength, modulus of elasticity, and modulus of rupture of the BFRCs, while the BFRCs fabricated from BFMs with nodes possessed higher horizontal shear strength. Therefore, the nodes in bamboo culms were an important factor in the uniform distribution of mechanical properties, and BFMs should be homogeneously arranged to reduce the impact of nodes on the mechanical strengths of BFRCs.展开更多
Fibers are used in many forms in engineering applications–one of the most common being used as reinforcement.Due to its renewable short natural growth cycle and abundance of bamboo resources,bamboo fiber has attracte...Fibers are used in many forms in engineering applications–one of the most common being used as reinforcement.Due to its renewable short natural growth cycle and abundance of bamboo resources,bamboo fiber has attracted attention over other natural fibers.Bamboo fiber has a complex natural structure but offers excellent mechanical properties,which are utilized in the textile,papermaking,construction,and composites industry.However,bam-boo fibers can easily absorb moisture and are prone to corrosion limiting their use in engineering applications.Therefore,a better understanding of bamboo fiber is particularly important.This paper reviews all existing research on the mechanical characterization of bamboo fiber with an emphasis on the extraction and treatment techniques,and their effect on relevant properties.The chemical composition of bamboo fibers has also been thoroughly investigated and presented herein.Current applications and future opportunities for bamboo fibers in various fields have been presented with a focus on research needs.This work can serve as a reference for future research on bamboo fiber.展开更多
A devised beating process was applied, which enabled the formation of slurry consisting of uniformly dispersed fibrillated polylactic acid(PLA) fibers with bamboo fiber, and the polymer material was obtained by a co...A devised beating process was applied, which enabled the formation of slurry consisting of uniformly dispersed fibrillated polylactic acid(PLA) fibers with bamboo fiber, and the polymer material was obtained by a conventional papermaking process. Owing to the fast dewatering time, good repeatability and the facility to manufacture on a large scale, this process was used. It was revealed that the beaten PLA fiber was overall in machinery extrusion by the results of optical microscope and scanning electron microscope(SEM) observations. The improvement in the tensile index, burst index, tear index and other mechanical properties was considered as a key benefit as a result of adding bamboo fiber.展开更多
In this study,natural bamboo fiber was prepared combining chemical pretreatment with mechanical disc refining,opening,and carding.An orthogonal experiment was designed based on four factors and three levels;thereafter...In this study,natural bamboo fiber was prepared combining chemical pretreatment with mechanical disc refining,opening,and carding.An orthogonal experiment was designed based on four factors and three levels;thereafter,the manufacturing process was optimized.The length,diameter,tensile strength,and elastic modulus of the bamboo fiber were determined,and the crystallinity and morphology of the fiber were analyzed using X-ray diffraction(XRD)and scanning electron microscopy(SEM).The results showed that the optimum parameters for the chemical pretreatment were a cooking temperature of 130℃,heating time of 2 h,NaOH dosage of 2%,and Na2SO3 dosage of 10%.The cooking yield of bamboo chips was 89.5%,and the carding yield of natural bamboo fiber was 43.0% under the optimum conditions.The length,diameter,tensile strength,and elastic modulus of the obtained fiber were 36.71 mm,0.285 mm,407 MPa,and 27.7 GPa,respectively.XRD analysis and SEM observations showed that the technology used in this study can produce bright and compact natural bamboo fibers with high crystallinity.展开更多
This paper describes the flexural properties of biodegradable composites made using natural fiber and biodegradable plastics. Biodegradable composites were fabricated from bamboo fiber bundles and PLA (polylactic acid...This paper describes the flexural properties of biodegradable composites made using natural fiber and biodegradable plastics. Biodegradable composites were fabricated from bamboo fiber bundles and PLA (polylactic acid) resin. In this research, effect of molding temperature and fiber content on flexural properties of bamboo fiber reinforced composites was investigated. The flexural strength of this composite increased with increasing fiber content up to 70%. The flexural strength of composites decreased at molding temperature of 180°C. Biodegradable composites possessed extremely high flexural strength of 273 MPa, in the case of molding temperature of 160°C and fiber content of 70%.展开更多
In this study the mechanical and erosion wear behavior of bamboo fiber reinforce epoxy composites filled with Cement By-Pass Dust (CBPD) were studied. The effect of CBPD content and alkalization on the various propert...In this study the mechanical and erosion wear behavior of bamboo fiber reinforce epoxy composites filled with Cement By-Pass Dust (CBPD) were studied. The effect of CBPD content and alkalization on the various properties of these composites was also investigated. Taguchi’s orthogonal arrays are used for analysis of experiential results. It identifies significant control factors influencing the erosion wear and also outlines significant interaction effects. Analysis of variance (ANOVA) test has also been performed on the measured data to find the most significant factors affecting erosion rate. Finally, eroded surfaces of both untreated and alkali treated bamboo fiber reinforced composites were characterized using SEM.展开更多
Previously, Polyvinyl Alcohol (PVA) and phenolic resin were used for resin impregnated bamboo fiber reinforced PP composites which was manufactures for resin impregnated bamboo fiber with polypropylene (PP). Resin imp...Previously, Polyvinyl Alcohol (PVA) and phenolic resin were used for resin impregnated bamboo fiber reinforced PP composites which was manufactures for resin impregnated bamboo fiber with polypropylene (PP). Resin impregnation method can show improvement on tensile strength of fiber. However, to reduce the contact surface area and low inter-facial shear strength (IFSS) between impregnated resin and matrix, using 40% weight fraction of bamboo fiber in PP matrix, PVA impregnated composites with mean flexural and tensile strength 10% higher than untreated composites were produced butphenolic resin impregnated fiber reinforced composition’s mechanical properties were decreased. In this study maleic anhydride grafted polypropylene (MAPP) was used to increase interfacial shear strength between resin impregnated fiber and PP. With 10% MAPP, IFSS between resin impregnated fiber and PP increased more than 100% and reinforced composites. MAPP with untreated, phenolic resin and PVA impregnated cases showed similar mechanical properties. Yet in water absorption test, the PVA treatment with bamboo/PP composites increased water absorption ratio. But with 10% MAPP, matrix PP water absorption ratio decreased like phenolic resin impregnated fiber reinforced composites. 10% MAPP with resin impregnated bamboo fiber reinforced PP composites can improve IFSS, mechanical properties of composite and can decrease water absorption PVA resin impregnated bamboo fiber reinforced composites.展开更多
This paper describes the mechanical properties of the composite materials produced using long bamboo fiber and bamboo powder. Bamboo fiber and powder can be hot press-molded much like plastic materials, and the use of...This paper describes the mechanical properties of the composite materials produced using long bamboo fiber and bamboo powder. Bamboo fiber and powder can be hot press-molded much like plastic materials, and the use of these materials in place of plastic products would reduce the environmental impact of extensive plastic use. In this study, the tensile and flexural properties of molded uni-directional long fiber reinforced composites made from bamboo fiber bundles and Bamboo powder were examined. The results showed that the tensile and flexural strength of bamboo fiber/powder composites were increased with increasing fiber content. On the other side, both strengths of composite were decreased with increasing molding temperature after 180℃. The highest tensile and flexural strengths of the bamboo fiber reinforced bamboo powder composites specimens which were tested were recorded at 169.9 MPa and 221.1 MPa, respectively.展开更多
For soil improvement, a method using plant fiber has been used since ancient times. In recent years, the construction method using plant fiber has attracted attention as a ground improvement technology with less envir...For soil improvement, a method using plant fiber has been used since ancient times. In recent years, the construction method using plant fiber has attracted attention as a ground improvement technology with less environmental load. In this work, the soil improvement effect using waste bamboo fiber was experimentally examined. The liquid limit and plastic limit of the mixed soil tended to increase with increasing bamboo fiber content and there was no change in the plasticity index of the mixed soil by the difference of bamboo fiber content. As a result from the compaction test and unconfined compression test, it was revealed that mixing of bamboo fiber resulted in a reduction of soil material required for construction and increasing in strength. The maximum compressive stress of the bamboo fiber mixed soil at the mixing ratio of 0%, 1%, 3% and 5% were 115, 108, 130 and 152 kN/m2, respectively. As the soil with fiber showed the lower stiffness and higher strength than that without fiber in the dry region, it can be judged that the addition of fiber brought ductility to the soil. And it was found that the decrease in the stiffness of the specimen due to the increase of water content was suppressed by the addition of the bamboo fiber. From the results of the observation with the digital microscope, it was observed that the two-layer structure consisting of the main relatively thick fibrous structure and the secondary capillary fibrous structure were formed. Thus, it was found that the complex structure of the bamboo fiber is deeply involved in the strength of the mixed soil.展开更多
Due to their interesting properties, bamboo fibers are more and more used as reinforcements in polymer matrices as a substitute for synthetic fibers. For their future service life, it is important to understand their ...Due to their interesting properties, bamboo fibers are more and more used as reinforcements in polymer matrices as a substitute for synthetic fibers. For their future service life, it is important to understand their physical and mechanical behavior over time in order to control the aging phenomenon within this fiber. The paper analyzed the influence of the age of the bamboo thatch and the vertical position of the Bambusa vulgaris species cultivated in Cameroon on the physicomechanical properties of the fibers extracted from the thatch. Fibers were mechanically extracted from three bamboo culms aged respectively 3 years (BV3), 4 years (BV4) and 5 years (BV5). The culms were thus identified according to their number of ramifications, and were felled no abated for a total of three culms. A section of about one meter on each of the parts (lower part, middle part, upper part) of these three culms was made for the opposite technological studies. Each age was therefore represented by three portions of thatch, one from the upper part, one from the middle part and the last from the lower part of the thatch, all giving a total number of nine samples taken and marked BV3inf, BV3moy, BV3sup, BV4inf, BV4moy, BV4sup, BV5inf, BV5moy, BV5sup before handling in the laboratory. Physical (density, moisture absorption rate) and mechanical (tensile tests according to DIN EN ISO 13934-1, natural durability) characterizations were used to better understand the mechanisms of this influence. In view of all the results obtained, the fiber from the upper part of the 3-year-old thatch (BV3sup) is the one with the best characteristics and is recommended for a better elaboration of bamboo fiber composites: (Density: 0.83;Absorption rate 11.7%;Young’s modulus: 7.4 GPa;Maximal stress: 64.3 MPa;Elongation at rupture: 1.1;Loss of mass natural durability: 7.63%).展开更多
Monosized nanoparticles of 57.3 nm were prepared by cationic emulsion polymerization using a polymerizable emulsifier DMHB.The adsorption of nanoparticles onto bamboo fibers was measured by conductometric titration.Th...Monosized nanoparticles of 57.3 nm were prepared by cationic emulsion polymerization using a polymerizable emulsifier DMHB.The adsorption of nanoparticles onto bamboo fibers was measured by conductometric titration.The results indicated that the adsorption capacity increased with increasing contact time until 120 min.The equilibrium data for nanoparticles adsorption onto bamboo fibers were well fitted to the Langmuir equation.Moreover,the monolayer adsorption capacity of nanoparticles in the concentration range(from 0.03 g/L to 0.6 g/L) studied,as calculated from Langmuir isotherm model at 25 C,was found to be 38.61 mg/g of fibers.The SEM images showed that the nanoparticles form a uniform monolayer on bamboo fiber surfaces.展开更多
We report on the investigation of intermode beating mode-locked(IBML)pulse generation in a simple all-fiber Tm^3+-doped double clad fiber laser(TDFL).This IBML TDFL is implemented by matching longitudinal-mode frequen...We report on the investigation of intermode beating mode-locked(IBML)pulse generation in a simple all-fiber Tm^3+-doped double clad fiber laser(TDFL).This IBML TDFL is implemented by matching longitudinal-mode frequency between 793 nm laser and TDFL without extra mode locker.The central wavelength of 1983 nm,the fundamental pulse frequency of 9.6 MHz and the signal-to-noise ratio(SNR)of>50 dB are achieved in this IBML TDFL.With laser cavity optimization,the IBML TDFL can finally generate an average output power of 1.03 W with corresponding pulse energy of 107 nJ.These results can provide an easily accessible way to develop compact large-energy,highpower TDFLs.展开更多
The purpose of this study is to develop a standard methodology for measuring the surface free energy (SFE),and its component parts of bamboo fiber materials.The current methods was reviewed to determine the surface te...The purpose of this study is to develop a standard methodology for measuring the surface free energy (SFE),and its component parts of bamboo fiber materials.The current methods was reviewed to determine the surface tension of natural fibers and the disadvantages of techniques used were discussed.Although numerous techniques have been employed to characterize surface tension of natural fibers,it seems that the credibility of results obtained may often be dubious.In this paper,critical surface tension estimates were obtained from computer aided machine vision based measurement.Data were then analyzed by the least squares method to estimate the components of SFE.SFE was estimated by least squares analysis and also by Schultz' method.By using the Fowkes method the polar and disperse fractions of the surface free energy of bamboo fiber materials can be obtained.Strictly speaking,this method is based on a combination of the knowledge of Fowkes theory. SFE is desirable when adhesion is required,and it avoids some of the limitations of existing studies which has been proposed.The calculation steps described in this research are only intended to explain the methods.The results show that the method that only determines SFE as a single parameter may be unable to differentiate adequately between bamboo fiber materials,but it is feasible and very efficient.In order to obtain the maximum performance from the computer aided machine vision based measurement instruments,this measurement should be recommended and kept available for reference.展开更多
The application of natural fibers as reinforcement in composite material has increased due to environmental concerns,low cost,degradability and health concerns.The purpose of this study is to identify the best type of...The application of natural fibers as reinforcement in composite material has increased due to environmental concerns,low cost,degradability and health concerns.The purpose of this study is to identify the best type of bamboo fibers to be used as reinforcement for kenaf(K)/bamboo hybrid composite.There were three types of bamboo fibers evaluated in this study which include bamboo mat(B),bamboo fabric(BF)and bamboo powder(BP).Chemical composition of B,BF,BP and K fibers were analyzed in this study.The effect of different types of bamboo fibers on tensile,impact,and morphological properties were investigated.The B/epoxy composites displayed the highest tensile strength(53.03 MPa)while K/epoxy composite had the highest tensile modulus(4.71 GPa).Scanning electron micrographs of B/epoxy composites displayed better fiber/matrix interfacial bonding in comparison to other studied composites.Results showed that impact strength of BF-based composite was highest(45.70 J/m).In conclusion,the tensile strength of B/epoxy composite is superior to the other bamboo reinforced composites and will be further evaluated in the next study.展开更多
In order to improve the mechanical properties and toughness of phenolic foams,a reinforcement method using two kinds of bamboo fibers was optimized with respect to the fiber contents.The compressive and flexural prope...In order to improve the mechanical properties and toughness of phenolic foams,a reinforcement method using two kinds of bamboo fibers was optimized with respect to the fiber contents.The compressive and flexural properties,thermal stability,friability and morphology of the phenolic foam composites were studied.The mechanical properties of the pristine foam and composites were evaluated by measuring the compressive strength.The results showed that the greatest mechanical properties were achieved by incorporating 2.5wt%of the reinforcement,and the compressive and flexural strengths of the two composites increased by 26.21%and 24.35%,respectively,compared with that of the pristine foam.The results of thermogravimetric testing demonstrated that the addition of bamboo fiber imparted better thermal stability to the phenolic foam,which was mainly attributed to the higher initial thermal decomposition temperature of the bamboo fiber.However,the influences of both reinforcements on the thermal stability of the material were negligible.The incorporation of bamboo fiber decreased the friability of the phenolic foam.Furthermore,the reduction in friability of the foam composites with longer lengths were higher than that in foams with shorter bamboo fibers.Moreover,the morphology and cell sizes of the fiber-reinforced phenolic foams were analyzed by scanning electron microscopy,the results indicated strong bonding between the fibers and phenolic matrix,and the incorporation of the bamboo fibers into the foam resulted in increased cell size of the material.Finally,the thermal conductivity and flame resistance of the phenolic foams reinforced by the bamboo fibers were also measured.展开更多
One of the large-scale industrial applications of Moso bamboo and poplar in China is the production of standardized fiberboard.When making fiberboard,a steam blasting pretreatment without the addition of traditional a...One of the large-scale industrial applications of Moso bamboo and poplar in China is the production of standardized fiberboard.When making fiberboard,a steam blasting pretreatment without the addition of traditional adhesives has become increasingly popular because of its environmental friendliness and wide applicability.In this study,the steam explosion pretreatment of Moso bamboo and poplar was conducted.The steam explosion pressure and holding time were varied to determine the influence of these factors on fiber quality by investigating the morphology of the fiber,the mass ratio of the unexploded specimen at the end face,the chemical composition,and the tensile strength.The following conclusions were drawn:As the steam burst pressure and holding time increased,more cellulose and hemicellulose degradation occurred(the degradation of hemicellulose was greater than that of cellulose),the lignin content rose,and the fiber bundle strength decreased.The degradation of bamboo cellulose was slightly higher than that of poplar,and the degradation of poplar hemicellulose was significantly faster than that of bamboo.Furthermore,increasing the steam explosion pressure and pressure holding time could not effectively increase the lignin content.It is recommended to use a steam blasting pressure of 2.5 MPa or 3.0 MPa and a holding time of 180 s to perform steam blasting on bamboo and poplar specimens.展开更多
Bamboo viscose fibers and conventional viscose fibers were measured by optical microscopy, scanning electron microscopy (SEM), Fourier transform infrared spectrometer (FTIR), and thermogravimetric analyzer/FTIR spectr...Bamboo viscose fibers and conventional viscose fibers were measured by optical microscopy, scanning electron microscopy (SEM), Fourier transform infrared spectrometer (FTIR), and thermogravimetric analyzer/FTIR spectrometer (TG-FTIR) respectively. At last, the method based on the testing of the Fourier transform near infrared (NIR) spectra was proposed to identify these two kinds of fibers. The discrimination models between bamboo viscose fibers with conventional viscose fibers were built by means of Ward's algorithm and Hierarchical cluster analysis(HCA) after the first derivative and vector normalization pretreatment, and were verified finally. The results indicate that these two kinds of fibers are similar in their morphology both of cross-section and longitudinal direction. What's more, the FTIR spectra, the thermostability, and decomposition products of TG-FTIR experiment are similar, and the testing results contribute little to the effective identification of the two fibers. However, the accuracy of the NIR spectra model is high, and the two kinds of fibers can be classified into two separated groups to achieve the identification simply and exactly.展开更多
文摘This study focuses on treating Guadua angustifolia bamboo fibers to enhance their properties for reinforcement applications in composite materials.Chemical(alkali)and physical(dry etching plasma)treatments were used separately to augment compatibility of Guadua angustifolia fibers with various composite matrices.The influence of these treatments on the fibers’performance,chemical composition,and surface morphology were analyzed.Statistical analysis indicated that alkali treatments reduced the tensile modulus of elasticity and strength of fibers by up to 40%and 20%,respectively,whereas plasma treatments maintain the fibers’mechanical performance.FTIR spectroscopy revealed significant alterations in chemical composition due to alkali treatments,while plasma-treated fibers showed minimal changes.Surface examination through Scanning Electron Microscopy(SEM)revealed post-treatment modifications in both cases;alkali treatments served as a cleanser,eliminating lignin and hemicellulose from the fiber surface,whereas plasma treatments also produce rough surfaces.These results validate the impact of the treatments on the fiber mechanical performance,which opens up possibilities for using Guadua angustifolia fibers as an alternative reinforcement in composite manufacturing.
基金Project(2007BAQ0104901) supported by the 11th Five-Year-Plan National Scientific & Technological ProgramProject(200704020) supported by the National Special Program on the Public Welfare Forests supported by Ministry of Science and Technology of China
文摘Green composites made from bamboo fibers and biodegradable resins were fabricated with press molding.On the basis of the Weibull distribution and the weakest-link theory,the statistical strength and distribution of bamboo fiber were analyzed,and the tensile strength of green composites was also investigated.The result confirms that the tensile statistical strength of fiber fits well with two-parameter Weibull distribution.In addition,the tensile strength of bamboo fiber reinforced composites is about 330 MPa with the fiber volume fraction of 70%.This value is close to or higher than that of other natural fiber reinforced green composites.
基金financially supported by the Key Laboratory of Wood Industry and Furniture Engineering of Sichuan Provincial Colleges and Universitiesthe National Forestry Public Welfare Scientific Research Program(201304503)the Science and Technology Innovation Foundation for College Students
文摘Dendrocalamus farinosus and Phyllostachys heterocycla bamboo logs were subjected to a novel treat- ment process for the preparation of bamboo fiber mats (BFMs), and the obtained BFM were used to fabricate bamboo fiber reinforced composite (BFRC). We studied the mechanical properties of the BFRCs manufactured from the mats with and without bamboo nodes. The pres- ence of nodes in BFM greatly reduced tensile strength, compressive strength, modulus of elasticity, and modulus of rupture of the BFRCs, while the BFRCs fabricated from BFMs with nodes possessed higher horizontal shear strength. Therefore, the nodes in bamboo culms were an important factor in the uniform distribution of mechanical properties, and BFMs should be homogeneously arranged to reduce the impact of nodes on the mechanical strengths of BFRCs.
基金The research work presented in this paper is supported by the National Natural Science Foundation of China(Nos.51878354 and 51308301)the Natural Science Foundation of Jiangsu Province(Nos.BK20181402 and BK20130978)+1 种基金Six Talent Peak High-Level Projects of Jiangsu Province(No.JZ029)Qinglan Project of Jiangsu Higher Education Institutions.Any research results expressed in this paper are those of the writers and do not necessarily reflect the views of the foundations.
文摘Fibers are used in many forms in engineering applications–one of the most common being used as reinforcement.Due to its renewable short natural growth cycle and abundance of bamboo resources,bamboo fiber has attracted attention over other natural fibers.Bamboo fiber has a complex natural structure but offers excellent mechanical properties,which are utilized in the textile,papermaking,construction,and composites industry.However,bam-boo fibers can easily absorb moisture and are prone to corrosion limiting their use in engineering applications.Therefore,a better understanding of bamboo fiber is particularly important.This paper reviews all existing research on the mechanical characterization of bamboo fiber with an emphasis on the extraction and treatment techniques,and their effect on relevant properties.The chemical composition of bamboo fibers has also been thoroughly investigated and presented herein.Current applications and future opportunities for bamboo fibers in various fields have been presented with a focus on research needs.This work can serve as a reference for future research on bamboo fiber.
基金Funded by thethe National Key Technology R&D Program for the 12th Five-Year Plan(No.2013BAC01B03)the Fundamental Research Funds for the Central Universties(2014ZZ0062)
文摘A devised beating process was applied, which enabled the formation of slurry consisting of uniformly dispersed fibrillated polylactic acid(PLA) fibers with bamboo fiber, and the polymer material was obtained by a conventional papermaking process. Owing to the fast dewatering time, good repeatability and the facility to manufacture on a large scale, this process was used. It was revealed that the beaten PLA fiber was overall in machinery extrusion by the results of optical microscope and scanning electron microscope(SEM) observations. The improvement in the tensile index, burst index, tear index and other mechanical properties was considered as a key benefit as a result of adding bamboo fiber.
基金financially supported by the National Key R&D Program of China(2017YFD0600802).
文摘In this study,natural bamboo fiber was prepared combining chemical pretreatment with mechanical disc refining,opening,and carding.An orthogonal experiment was designed based on four factors and three levels;thereafter,the manufacturing process was optimized.The length,diameter,tensile strength,and elastic modulus of the bamboo fiber were determined,and the crystallinity and morphology of the fiber were analyzed using X-ray diffraction(XRD)and scanning electron microscopy(SEM).The results showed that the optimum parameters for the chemical pretreatment were a cooking temperature of 130℃,heating time of 2 h,NaOH dosage of 2%,and Na2SO3 dosage of 10%.The cooking yield of bamboo chips was 89.5%,and the carding yield of natural bamboo fiber was 43.0% under the optimum conditions.The length,diameter,tensile strength,and elastic modulus of the obtained fiber were 36.71 mm,0.285 mm,407 MPa,and 27.7 GPa,respectively.XRD analysis and SEM observations showed that the technology used in this study can produce bright and compact natural bamboo fibers with high crystallinity.
文摘This paper describes the flexural properties of biodegradable composites made using natural fiber and biodegradable plastics. Biodegradable composites were fabricated from bamboo fiber bundles and PLA (polylactic acid) resin. In this research, effect of molding temperature and fiber content on flexural properties of bamboo fiber reinforced composites was investigated. The flexural strength of this composite increased with increasing fiber content up to 70%. The flexural strength of composites decreased at molding temperature of 180°C. Biodegradable composites possessed extremely high flexural strength of 273 MPa, in the case of molding temperature of 160°C and fiber content of 70%.
文摘In this study the mechanical and erosion wear behavior of bamboo fiber reinforce epoxy composites filled with Cement By-Pass Dust (CBPD) were studied. The effect of CBPD content and alkalization on the various properties of these composites was also investigated. Taguchi’s orthogonal arrays are used for analysis of experiential results. It identifies significant control factors influencing the erosion wear and also outlines significant interaction effects. Analysis of variance (ANOVA) test has also been performed on the measured data to find the most significant factors affecting erosion rate. Finally, eroded surfaces of both untreated and alkali treated bamboo fiber reinforced composites were characterized using SEM.
文摘Previously, Polyvinyl Alcohol (PVA) and phenolic resin were used for resin impregnated bamboo fiber reinforced PP composites which was manufactures for resin impregnated bamboo fiber with polypropylene (PP). Resin impregnation method can show improvement on tensile strength of fiber. However, to reduce the contact surface area and low inter-facial shear strength (IFSS) between impregnated resin and matrix, using 40% weight fraction of bamboo fiber in PP matrix, PVA impregnated composites with mean flexural and tensile strength 10% higher than untreated composites were produced butphenolic resin impregnated fiber reinforced composition’s mechanical properties were decreased. In this study maleic anhydride grafted polypropylene (MAPP) was used to increase interfacial shear strength between resin impregnated fiber and PP. With 10% MAPP, IFSS between resin impregnated fiber and PP increased more than 100% and reinforced composites. MAPP with untreated, phenolic resin and PVA impregnated cases showed similar mechanical properties. Yet in water absorption test, the PVA treatment with bamboo/PP composites increased water absorption ratio. But with 10% MAPP, matrix PP water absorption ratio decreased like phenolic resin impregnated fiber reinforced composites. 10% MAPP with resin impregnated bamboo fiber reinforced PP composites can improve IFSS, mechanical properties of composite and can decrease water absorption PVA resin impregnated bamboo fiber reinforced composites.
文摘This paper describes the mechanical properties of the composite materials produced using long bamboo fiber and bamboo powder. Bamboo fiber and powder can be hot press-molded much like plastic materials, and the use of these materials in place of plastic products would reduce the environmental impact of extensive plastic use. In this study, the tensile and flexural properties of molded uni-directional long fiber reinforced composites made from bamboo fiber bundles and Bamboo powder were examined. The results showed that the tensile and flexural strength of bamboo fiber/powder composites were increased with increasing fiber content. On the other side, both strengths of composite were decreased with increasing molding temperature after 180℃. The highest tensile and flexural strengths of the bamboo fiber reinforced bamboo powder composites specimens which were tested were recorded at 169.9 MPa and 221.1 MPa, respectively.
文摘For soil improvement, a method using plant fiber has been used since ancient times. In recent years, the construction method using plant fiber has attracted attention as a ground improvement technology with less environmental load. In this work, the soil improvement effect using waste bamboo fiber was experimentally examined. The liquid limit and plastic limit of the mixed soil tended to increase with increasing bamboo fiber content and there was no change in the plasticity index of the mixed soil by the difference of bamboo fiber content. As a result from the compaction test and unconfined compression test, it was revealed that mixing of bamboo fiber resulted in a reduction of soil material required for construction and increasing in strength. The maximum compressive stress of the bamboo fiber mixed soil at the mixing ratio of 0%, 1%, 3% and 5% were 115, 108, 130 and 152 kN/m2, respectively. As the soil with fiber showed the lower stiffness and higher strength than that without fiber in the dry region, it can be judged that the addition of fiber brought ductility to the soil. And it was found that the decrease in the stiffness of the specimen due to the increase of water content was suppressed by the addition of the bamboo fiber. From the results of the observation with the digital microscope, it was observed that the two-layer structure consisting of the main relatively thick fibrous structure and the secondary capillary fibrous structure were formed. Thus, it was found that the complex structure of the bamboo fiber is deeply involved in the strength of the mixed soil.
文摘Due to their interesting properties, bamboo fibers are more and more used as reinforcements in polymer matrices as a substitute for synthetic fibers. For their future service life, it is important to understand their physical and mechanical behavior over time in order to control the aging phenomenon within this fiber. The paper analyzed the influence of the age of the bamboo thatch and the vertical position of the Bambusa vulgaris species cultivated in Cameroon on the physicomechanical properties of the fibers extracted from the thatch. Fibers were mechanically extracted from three bamboo culms aged respectively 3 years (BV3), 4 years (BV4) and 5 years (BV5). The culms were thus identified according to their number of ramifications, and were felled no abated for a total of three culms. A section of about one meter on each of the parts (lower part, middle part, upper part) of these three culms was made for the opposite technological studies. Each age was therefore represented by three portions of thatch, one from the upper part, one from the middle part and the last from the lower part of the thatch, all giving a total number of nine samples taken and marked BV3inf, BV3moy, BV3sup, BV4inf, BV4moy, BV4sup, BV5inf, BV5moy, BV5sup before handling in the laboratory. Physical (density, moisture absorption rate) and mechanical (tensile tests according to DIN EN ISO 13934-1, natural durability) characterizations were used to better understand the mechanisms of this influence. In view of all the results obtained, the fiber from the upper part of the 3-year-old thatch (BV3sup) is the one with the best characteristics and is recommended for a better elaboration of bamboo fiber composites: (Density: 0.83;Absorption rate 11.7%;Young’s modulus: 7.4 GPa;Maximal stress: 64.3 MPa;Elongation at rupture: 1.1;Loss of mass natural durability: 7.63%).
基金supported by National Natural Science Foundation of China(No.1173086)National Key Technology R&D Program (Nos.2014A1302 and 2014AEOQO1)Natural Science Fund of Tianjin,China(No.14JCZDJC37200)
文摘Monosized nanoparticles of 57.3 nm were prepared by cationic emulsion polymerization using a polymerizable emulsifier DMHB.The adsorption of nanoparticles onto bamboo fibers was measured by conductometric titration.The results indicated that the adsorption capacity increased with increasing contact time until 120 min.The equilibrium data for nanoparticles adsorption onto bamboo fibers were well fitted to the Langmuir equation.Moreover,the monolayer adsorption capacity of nanoparticles in the concentration range(from 0.03 g/L to 0.6 g/L) studied,as calculated from Langmuir isotherm model at 25 C,was found to be 38.61 mg/g of fibers.The SEM images showed that the nanoparticles form a uniform monolayer on bamboo fiber surfaces.
基金supported by the National Natural Science Foundation of China(NSFC)(No.61805124)Natural Science Foundation of Ningbo City,China(No.2018A610023)+1 种基金3315 Innovation Team in Ningbo City,Zhejiang Province,ChinaK.C.Wong Magna Fund in Ningbo University,China。
文摘We report on the investigation of intermode beating mode-locked(IBML)pulse generation in a simple all-fiber Tm^3+-doped double clad fiber laser(TDFL).This IBML TDFL is implemented by matching longitudinal-mode frequency between 793 nm laser and TDFL without extra mode locker.The central wavelength of 1983 nm,the fundamental pulse frequency of 9.6 MHz and the signal-to-noise ratio(SNR)of>50 dB are achieved in this IBML TDFL.With laser cavity optimization,the IBML TDFL can finally generate an average output power of 1.03 W with corresponding pulse energy of 107 nJ.These results can provide an easily accessible way to develop compact large-energy,highpower TDFLs.
基金the National Natural Science Foundation of China(No.31101085)the Scientific Research and Development Foundation for Start-up Projects of Zhejiang Agriculture and Forestry University (No.2034020044)
文摘The purpose of this study is to develop a standard methodology for measuring the surface free energy (SFE),and its component parts of bamboo fiber materials.The current methods was reviewed to determine the surface tension of natural fibers and the disadvantages of techniques used were discussed.Although numerous techniques have been employed to characterize surface tension of natural fibers,it seems that the credibility of results obtained may often be dubious.In this paper,critical surface tension estimates were obtained from computer aided machine vision based measurement.Data were then analyzed by the least squares method to estimate the components of SFE.SFE was estimated by least squares analysis and also by Schultz' method.By using the Fowkes method the polar and disperse fractions of the surface free energy of bamboo fiber materials can be obtained.Strictly speaking,this method is based on a combination of the knowledge of Fowkes theory. SFE is desirable when adhesion is required,and it avoids some of the limitations of existing studies which has been proposed.The calculation steps described in this research are only intended to explain the methods.The results show that the method that only determines SFE as a single parameter may be unable to differentiate adequately between bamboo fiber materials,but it is feasible and very efficient.In order to obtain the maximum performance from the computer aided machine vision based measurement instruments,this measurement should be recommended and kept available for reference.
文摘The application of natural fibers as reinforcement in composite material has increased due to environmental concerns,low cost,degradability and health concerns.The purpose of this study is to identify the best type of bamboo fibers to be used as reinforcement for kenaf(K)/bamboo hybrid composite.There were three types of bamboo fibers evaluated in this study which include bamboo mat(B),bamboo fabric(BF)and bamboo powder(BP).Chemical composition of B,BF,BP and K fibers were analyzed in this study.The effect of different types of bamboo fibers on tensile,impact,and morphological properties were investigated.The B/epoxy composites displayed the highest tensile strength(53.03 MPa)while K/epoxy composite had the highest tensile modulus(4.71 GPa).Scanning electron micrographs of B/epoxy composites displayed better fiber/matrix interfacial bonding in comparison to other studied composites.Results showed that impact strength of BF-based composite was highest(45.70 J/m).In conclusion,the tensile strength of B/epoxy composite is superior to the other bamboo reinforced composites and will be further evaluated in the next study.
基金the National Key Point Research and Invention Program of the Thirteenth(No.2017YFD0600802)for financial support.
文摘In order to improve the mechanical properties and toughness of phenolic foams,a reinforcement method using two kinds of bamboo fibers was optimized with respect to the fiber contents.The compressive and flexural properties,thermal stability,friability and morphology of the phenolic foam composites were studied.The mechanical properties of the pristine foam and composites were evaluated by measuring the compressive strength.The results showed that the greatest mechanical properties were achieved by incorporating 2.5wt%of the reinforcement,and the compressive and flexural strengths of the two composites increased by 26.21%and 24.35%,respectively,compared with that of the pristine foam.The results of thermogravimetric testing demonstrated that the addition of bamboo fiber imparted better thermal stability to the phenolic foam,which was mainly attributed to the higher initial thermal decomposition temperature of the bamboo fiber.However,the influences of both reinforcements on the thermal stability of the material were negligible.The incorporation of bamboo fiber decreased the friability of the phenolic foam.Furthermore,the reduction in friability of the foam composites with longer lengths were higher than that in foams with shorter bamboo fibers.Moreover,the morphology and cell sizes of the fiber-reinforced phenolic foams were analyzed by scanning electron microscopy,the results indicated strong bonding between the fibers and phenolic matrix,and the incorporation of the bamboo fibers into the foam resulted in increased cell size of the material.Finally,the thermal conductivity and flame resistance of the phenolic foams reinforced by the bamboo fibers were also measured.
基金We thank Jiangsu Province High-level Talent Selection Training(JNHB-127)the National Key R&D Program of China(2017YFC0703501)+5 种基金the National Natural Science Foundation of China(51878590)Jiangsu Provincial Department of Housing and construction(2018ZD117 and 2019ZD092)the Natural Science Foundation of Jiangsu Province(Grant Nos.BK20170926 and BK20150878)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.19KJD220002)the Yangzhou Science and Technology Project(YZ2019047)College Research Project(2019xjzk014)for their funding.
文摘One of the large-scale industrial applications of Moso bamboo and poplar in China is the production of standardized fiberboard.When making fiberboard,a steam blasting pretreatment without the addition of traditional adhesives has become increasingly popular because of its environmental friendliness and wide applicability.In this study,the steam explosion pretreatment of Moso bamboo and poplar was conducted.The steam explosion pressure and holding time were varied to determine the influence of these factors on fiber quality by investigating the morphology of the fiber,the mass ratio of the unexploded specimen at the end face,the chemical composition,and the tensile strength.The following conclusions were drawn:As the steam burst pressure and holding time increased,more cellulose and hemicellulose degradation occurred(the degradation of hemicellulose was greater than that of cellulose),the lignin content rose,and the fiber bundle strength decreased.The degradation of bamboo cellulose was slightly higher than that of poplar,and the degradation of poplar hemicellulose was significantly faster than that of bamboo.Furthermore,increasing the steam explosion pressure and pressure holding time could not effectively increase the lignin content.It is recommended to use a steam blasting pressure of 2.5 MPa or 3.0 MPa and a holding time of 180 s to perform steam blasting on bamboo and poplar specimens.
基金General Administration of Quality Supervision,Inspection and Quarantine of the People's Republic of Chinathe Project of Shanghai Municipal Bureau of Quality and Technical Supervision,China(No. 2010-Z17)
文摘Bamboo viscose fibers and conventional viscose fibers were measured by optical microscopy, scanning electron microscopy (SEM), Fourier transform infrared spectrometer (FTIR), and thermogravimetric analyzer/FTIR spectrometer (TG-FTIR) respectively. At last, the method based on the testing of the Fourier transform near infrared (NIR) spectra was proposed to identify these two kinds of fibers. The discrimination models between bamboo viscose fibers with conventional viscose fibers were built by means of Ward's algorithm and Hierarchical cluster analysis(HCA) after the first derivative and vector normalization pretreatment, and were verified finally. The results indicate that these two kinds of fibers are similar in their morphology both of cross-section and longitudinal direction. What's more, the FTIR spectra, the thermostability, and decomposition products of TG-FTIR experiment are similar, and the testing results contribute little to the effective identification of the two fibers. However, the accuracy of the NIR spectra model is high, and the two kinds of fibers can be classified into two separated groups to achieve the identification simply and exactly.