期刊文献+
共找到1,711篇文章
< 1 2 86 >
每页显示 20 50 100
Alkali and Plasma-Treated Guadua angustifolia Bamboo Fibers:A Study on Reinforcement Potential for Polymeric Matrices
1
作者 Patricia Luna Juan Lizarazo-Marriaga Alvaro Mariño 《Journal of Renewable Materials》 EI CAS 2024年第8期1399-1416,共18页
This study focuses on treating Guadua angustifolia bamboo fibers to enhance their properties for reinforcement applications in composite materials.Chemical(alkali)and physical(dry etching plasma)treatments were used s... This study focuses on treating Guadua angustifolia bamboo fibers to enhance their properties for reinforcement applications in composite materials.Chemical(alkali)and physical(dry etching plasma)treatments were used separately to augment compatibility of Guadua angustifolia fibers with various composite matrices.The influence of these treatments on the fibers’performance,chemical composition,and surface morphology were analyzed.Statistical analysis indicated that alkali treatments reduced the tensile modulus of elasticity and strength of fibers by up to 40%and 20%,respectively,whereas plasma treatments maintain the fibers’mechanical performance.FTIR spectroscopy revealed significant alterations in chemical composition due to alkali treatments,while plasma-treated fibers showed minimal changes.Surface examination through Scanning Electron Microscopy(SEM)revealed post-treatment modifications in both cases;alkali treatments served as a cleanser,eliminating lignin and hemicellulose from the fiber surface,whereas plasma treatments also produce rough surfaces.These results validate the impact of the treatments on the fiber mechanical performance,which opens up possibilities for using Guadua angustifolia fibers as an alternative reinforcement in composite manufacturing. 展开更多
关键词 bamboo fibers Guadua angustifolia alkali treatment dry etching plasma treatment composite reinforcement
下载PDF
Evaluation of statistical strength of bamboo fiber and mechanical properties of fiber reinforced green composites 被引量:4
2
作者 曹勇 吴义强 《Journal of Central South University》 SCIE EI CAS 2008年第S1期564-567,共4页
Green composites made from bamboo fibers and biodegradable resins were fabricated with press molding.On the basis of the Weibull distribution and the weakest-link theory,the statistical strength and distribution of ba... Green composites made from bamboo fibers and biodegradable resins were fabricated with press molding.On the basis of the Weibull distribution and the weakest-link theory,the statistical strength and distribution of bamboo fiber were analyzed,and the tensile strength of green composites was also investigated.The result confirms that the tensile statistical strength of fiber fits well with two-parameter Weibull distribution.In addition,the tensile strength of bamboo fiber reinforced composites is about 330 MPa with the fiber volume fraction of 70%.This value is close to or higher than that of other natural fiber reinforced green composites. 展开更多
关键词 bamboo fiber Weibull distribution TENSILE STRENGTH green composite
下载PDF
Effects of characteristic inhomogeneity of bamboo culm nodes on mechanical properties of bamboo fiber reinforced composite 被引量:5
3
作者 Jinqiu Qi Jiulong Xie +1 位作者 Wenji Yu Simin Chen 《Journal of Forestry Research》 SCIE CAS CSCD 2015年第4期1057-1060,共4页
Dendrocalamus farinosus and Phyllostachys heterocycla bamboo logs were subjected to a novel treat- ment process for the preparation of bamboo fiber mats (BFMs), and the obtained BFM were used to fabricate bamboo fib... Dendrocalamus farinosus and Phyllostachys heterocycla bamboo logs were subjected to a novel treat- ment process for the preparation of bamboo fiber mats (BFMs), and the obtained BFM were used to fabricate bamboo fiber reinforced composite (BFRC). We studied the mechanical properties of the BFRCs manufactured from the mats with and without bamboo nodes. The pres- ence of nodes in BFM greatly reduced tensile strength, compressive strength, modulus of elasticity, and modulus of rupture of the BFRCs, while the BFRCs fabricated from BFMs with nodes possessed higher horizontal shear strength. Therefore, the nodes in bamboo culms were an important factor in the uniform distribution of mechanical properties, and BFMs should be homogeneously arranged to reduce the impact of nodes on the mechanical strengths of BFRCs. 展开更多
关键词 bamboo fiber reinforced composite - Culmnode Mechanical properties
下载PDF
Properties and Applications of Bamboo Fiber—A Current-State-of-the Art 被引量:6
4
作者 Chen Chen Haitao Li +7 位作者 Assima Dauletbek Feng Shen David Hui Milan Gaff Rodolfo Lorenzo Ileana Corbi Ottavia Corbi Mahmud Ashraf 《Journal of Renewable Materials》 SCIE EI 2022年第3期605-624,共20页
Fibers are used in many forms in engineering applications–one of the most common being used as reinforcement.Due to its renewable short natural growth cycle and abundance of bamboo resources,bamboo fiber has attracte... Fibers are used in many forms in engineering applications–one of the most common being used as reinforcement.Due to its renewable short natural growth cycle and abundance of bamboo resources,bamboo fiber has attracted attention over other natural fibers.Bamboo fiber has a complex natural structure but offers excellent mechanical properties,which are utilized in the textile,papermaking,construction,and composites industry.However,bam-boo fibers can easily absorb moisture and are prone to corrosion limiting their use in engineering applications.Therefore,a better understanding of bamboo fiber is particularly important.This paper reviews all existing research on the mechanical characterization of bamboo fiber with an emphasis on the extraction and treatment techniques,and their effect on relevant properties.The chemical composition of bamboo fibers has also been thoroughly investigated and presented herein.Current applications and future opportunities for bamboo fibers in various fields have been presented with a focus on research needs.This work can serve as a reference for future research on bamboo fiber. 展开更多
关键词 bamboo fiber chemical composition STRUCTURE production method PROPERTIES APPLICATION
下载PDF
Production of Bamboo Fiber Reinforced Fibrillated Poly(Lactic Acid)(PLA) Material Obtained by a Papermaking Process 被引量:4
5
作者 王瑞彬 YANG Rendang YANG Fei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第2期429-432,共4页
A devised beating process was applied, which enabled the formation of slurry consisting of uniformly dispersed fibrillated polylactic acid(PLA) fibers with bamboo fiber, and the polymer material was obtained by a co... A devised beating process was applied, which enabled the formation of slurry consisting of uniformly dispersed fibrillated polylactic acid(PLA) fibers with bamboo fiber, and the polymer material was obtained by a conventional papermaking process. Owing to the fast dewatering time, good repeatability and the facility to manufacture on a large scale, this process was used. It was revealed that the beaten PLA fiber was overall in machinery extrusion by the results of optical microscope and scanning electron microscope(SEM) observations. The improvement in the tensile index, burst index, tear index and other mechanical properties was considered as a key benefit as a result of adding bamboo fiber. 展开更多
关键词 bamboo fiber polylactic acid reinforcement papermaking process
下载PDF
Preparation and Characterization of Natural Bamboo Fiber 被引量:7
6
作者 Kaixuan Li Qingxian Miao +3 位作者 He Zhao Jiawei Yang Haitao Cheng Lihui Chen 《Paper And Biomaterials》 2020年第2期43-52,共10页
In this study,natural bamboo fiber was prepared combining chemical pretreatment with mechanical disc refining,opening,and carding.An orthogonal experiment was designed based on four factors and three levels;thereafter... In this study,natural bamboo fiber was prepared combining chemical pretreatment with mechanical disc refining,opening,and carding.An orthogonal experiment was designed based on four factors and three levels;thereafter,the manufacturing process was optimized.The length,diameter,tensile strength,and elastic modulus of the bamboo fiber were determined,and the crystallinity and morphology of the fiber were analyzed using X-ray diffraction(XRD)and scanning electron microscopy(SEM).The results showed that the optimum parameters for the chemical pretreatment were a cooking temperature of 130℃,heating time of 2 h,NaOH dosage of 2%,and Na2SO3 dosage of 10%.The cooking yield of bamboo chips was 89.5%,and the carding yield of natural bamboo fiber was 43.0% under the optimum conditions.The length,diameter,tensile strength,and elastic modulus of the obtained fiber were 36.71 mm,0.285 mm,407 MPa,and 27.7 GPa,respectively.XRD analysis and SEM observations showed that the technology used in this study can produce bright and compact natural bamboo fibers with high crystallinity. 展开更多
关键词 natural bamboo fiber chemical PRETREATMENT DISC REFINING sulfonic ACID group YIELD
下载PDF
Flexural Properties of Long Bamboo Fiber/ PLA Composites 被引量:2
7
作者 Shinji Ochi 《Open Journal of Composite Materials》 2015年第3期70-78,共9页
This paper describes the flexural properties of biodegradable composites made using natural fiber and biodegradable plastics. Biodegradable composites were fabricated from bamboo fiber bundles and PLA (polylactic acid... This paper describes the flexural properties of biodegradable composites made using natural fiber and biodegradable plastics. Biodegradable composites were fabricated from bamboo fiber bundles and PLA (polylactic acid) resin. In this research, effect of molding temperature and fiber content on flexural properties of bamboo fiber reinforced composites was investigated. The flexural strength of this composite increased with increasing fiber content up to 70%. The flexural strength of composites decreased at molding temperature of 180&degC. Biodegradable composites possessed extremely high flexural strength of 273 MPa, in the case of molding temperature of 160&degC and fiber content of 70%. 展开更多
关键词 bamboo fiber PLA BIODEGRADABLE COMPOSITES Natural fiber FLEXURAL Strength
下载PDF
Effect of Filler Content and Alkalization on Mechanical and Erosion Wear Behavior of CBPD Filled Bamboo Fiber Composites
8
作者 Anu Gupta Ajit Kumar +1 位作者 Amar Patnaik Sandhyarani Biswas 《Journal of Surface Engineered Materials and Advanced Technology》 2012年第3期149-157,共9页
In this study the mechanical and erosion wear behavior of bamboo fiber reinforce epoxy composites filled with Cement By-Pass Dust (CBPD) were studied. The effect of CBPD content and alkalization on the various propert... In this study the mechanical and erosion wear behavior of bamboo fiber reinforce epoxy composites filled with Cement By-Pass Dust (CBPD) were studied. The effect of CBPD content and alkalization on the various properties of these composites was also investigated. Taguchi’s orthogonal arrays are used for analysis of experiential results. It identifies significant control factors influencing the erosion wear and also outlines significant interaction effects. Analysis of variance (ANOVA) test has also been performed on the measured data to find the most significant factors affecting erosion rate. Finally, eroded surfaces of both untreated and alkali treated bamboo fiber reinforced composites were characterized using SEM. 展开更多
关键词 COMPOSITES bamboo fiber MECHANICAL Property EROSION Wear CBPD
下载PDF
Study of Maleic Anhydride Grafted Polypropylene Effect on Resin Impregnated Bamboo Fiber Polypropylene Composit
9
作者 Gibeop Nam Noboru Wakamoto +1 位作者 Kazuya Okubo Toru Fujii 《Agricultural Sciences》 2014年第13期1322-1328,共7页
Previously, Polyvinyl Alcohol (PVA) and phenolic resin were used for resin impregnated bamboo fiber reinforced PP composites which was manufactures for resin impregnated bamboo fiber with polypropylene (PP). Resin imp... Previously, Polyvinyl Alcohol (PVA) and phenolic resin were used for resin impregnated bamboo fiber reinforced PP composites which was manufactures for resin impregnated bamboo fiber with polypropylene (PP). Resin impregnation method can show improvement on tensile strength of fiber. However, to reduce the contact surface area and low inter-facial shear strength (IFSS) between impregnated resin and matrix, using 40% weight fraction of bamboo fiber in PP matrix, PVA impregnated composites with mean flexural and tensile strength 10% higher than untreated composites were produced butphenolic resin impregnated fiber reinforced composition’s mechanical properties were decreased. In this study maleic anhydride grafted polypropylene (MAPP) was used to increase interfacial shear strength between resin impregnated fiber and PP. With 10% MAPP, IFSS between resin impregnated fiber and PP increased more than 100% and reinforced composites. MAPP with untreated, phenolic resin and PVA impregnated cases showed similar mechanical properties. Yet in water absorption test, the PVA treatment with bamboo/PP composites increased water absorption ratio. But with 10% MAPP, matrix PP water absorption ratio decreased like phenolic resin impregnated fiber reinforced composites. 10% MAPP with resin impregnated bamboo fiber reinforced PP composites can improve IFSS, mechanical properties of composite and can decrease water absorption PVA resin impregnated bamboo fiber reinforced composites. 展开更多
关键词 bamboo fiber Reinforced Composite RESIN IMPREGNATION Method Polyvinyl Alcohol PHENOLIC RESIN fiber Treatment Maleic ANHYDRIDE Grafted POLYPROPYLENE (MAPP) Mechanical Properties
下载PDF
Mechanical Properties of Uni-Directional Long Bamboo Fiber/Bamboo Powder Composite Materials
10
作者 Shinji Ochi 《Materials Sciences and Applications》 2014年第14期1011-1019,共9页
This paper describes the mechanical properties of the composite materials produced using long bamboo fiber and bamboo powder. Bamboo fiber and powder can be hot press-molded much like plastic materials, and the use of... This paper describes the mechanical properties of the composite materials produced using long bamboo fiber and bamboo powder. Bamboo fiber and powder can be hot press-molded much like plastic materials, and the use of these materials in place of plastic products would reduce the environmental impact of extensive plastic use. In this study, the tensile and flexural properties of molded uni-directional long fiber reinforced composites made from bamboo fiber bundles and Bamboo powder were examined. The results showed that the tensile and flexural strength of bamboo fiber/powder composites were increased with increasing fiber content. On the other side, both strengths of composite were decreased with increasing molding temperature after 180℃. The highest tensile and flexural strengths of the bamboo fiber reinforced bamboo powder composites specimens which were tested were recorded at 169.9 MPa and 221.1 MPa, respectively. 展开更多
关键词 bamboo fiber bamboo Powder Composite Materials TENSILE STRENGTH FLEXURAL STRENGTH
下载PDF
Effect of Waste Bamboo Fiber Addition on Mechanical Properties of Soil
11
作者 Motohei Kanayama Satoko Kawamura 《Open Journal of Civil Engineering》 2019年第3期173-184,共12页
For soil improvement, a method using plant fiber has been used since ancient times. In recent years, the construction method using plant fiber has attracted attention as a ground improvement technology with less envir... For soil improvement, a method using plant fiber has been used since ancient times. In recent years, the construction method using plant fiber has attracted attention as a ground improvement technology with less environmental load. In this work, the soil improvement effect using waste bamboo fiber was experimentally examined. The liquid limit and plastic limit of the mixed soil tended to increase with increasing bamboo fiber content and there was no change in the plasticity index of the mixed soil by the difference of bamboo fiber content. As a result from the compaction test and unconfined compression test, it was revealed that mixing of bamboo fiber resulted in a reduction of soil material required for construction and increasing in strength. The maximum compressive stress of the bamboo fiber mixed soil at the mixing ratio of 0%, 1%, 3% and 5% were 115, 108, 130 and 152 kN/m2, respectively. As the soil with fiber showed the lower stiffness and higher strength than that without fiber in the dry region, it can be judged that the addition of fiber brought ductility to the soil. And it was found that the decrease in the stiffness of the specimen due to the increase of water content was suppressed by the addition of the bamboo fiber. From the results of the observation with the digital microscope, it was observed that the two-layer structure consisting of the main relatively thick fibrous structure and the secondary capillary fibrous structure were formed. Thus, it was found that the complex structure of the bamboo fiber is deeply involved in the strength of the mixed soil. 展开更多
关键词 Industrial WASTE bamboo fiber Andsol Unconfined COMPRESSIVE STRENGTH SOIL improvement
下载PDF
Influence of the Age of Bamboo Culm and Its Vertical Position on the Technological Properties of Bamboo Fibers: A Case of Bambusa vulgaris Species from Cameroonian Culture
12
作者 Joseph Loic Souck Theodore Tchotang Bienvenu Kenmeugne 《Open Journal of Composite Materials》 CAS 2022年第3期98-110,共13页
Due to their interesting properties, bamboo fibers are more and more used as reinforcements in polymer matrices as a substitute for synthetic fibers. For their future service life, it is important to understand their ... Due to their interesting properties, bamboo fibers are more and more used as reinforcements in polymer matrices as a substitute for synthetic fibers. For their future service life, it is important to understand their physical and mechanical behavior over time in order to control the aging phenomenon within this fiber. The paper analyzed the influence of the age of the bamboo thatch and the vertical position of the Bambusa vulgaris species cultivated in Cameroon on the physicomechanical properties of the fibers extracted from the thatch. Fibers were mechanically extracted from three bamboo culms aged respectively 3 years (BV3), 4 years (BV4) and 5 years (BV5). The culms were thus identified according to their number of ramifications, and were felled no abated for a total of three culms. A section of about one meter on each of the parts (lower part, middle part, upper part) of these three culms was made for the opposite technological studies. Each age was therefore represented by three portions of thatch, one from the upper part, one from the middle part and the last from the lower part of the thatch, all giving a total number of nine samples taken and marked BV3inf, BV3moy, BV3sup, BV4inf, BV4moy, BV4sup, BV5inf, BV5moy, BV5sup before handling in the laboratory. Physical (density, moisture absorption rate) and mechanical (tensile tests according to DIN EN ISO 13934-1, natural durability) characterizations were used to better understand the mechanisms of this influence. In view of all the results obtained, the fiber from the upper part of the 3-year-old thatch (BV3sup) is the one with the best characteristics and is recommended for a better elaboration of bamboo fiber composites: (Density: 0.83;Absorption rate 11.7%;Young’s modulus: 7.4 GPa;Maximal stress: 64.3 MPa;Elongation at rupture: 1.1;Loss of mass natural durability: 7.63%). 展开更多
关键词 fiber bamboo Culm Characterization ELABORATION Extraction
下载PDF
NTDC United with Jigao to Promote “TANBOOCEL” Bamboo Fiber
13
作者 Wang Ting 《China Textile》 2010年第4期18-18,共1页
On March 27th,the National Textile Development Center and Hebei Jigao Chemical Fibre Co.,Ltd united together in Beijing to announce that
关键词 MODE bamboo fiber NTDC United with Jigao to Promote TANBOOCEL
下载PDF
Adsorption of cationic copolymer nanoparticles onto bamboo fiber surfaces measured by conductometric titration 被引量:1
14
作者 Xiu-Ming Liu Dong-Qin He Kuan-Jun Fang 《Chinese Chemical Letters》 SCIE CAS CSCD 2015年第9期1174-1178,共5页
Monosized nanoparticles of 57.3 nm were prepared by cationic emulsion polymerization using a polymerizable emulsifier DMHB.The adsorption of nanoparticles onto bamboo fibers was measured by conductometric titration.Th... Monosized nanoparticles of 57.3 nm were prepared by cationic emulsion polymerization using a polymerizable emulsifier DMHB.The adsorption of nanoparticles onto bamboo fibers was measured by conductometric titration.The results indicated that the adsorption capacity increased with increasing contact time until 120 min.The equilibrium data for nanoparticles adsorption onto bamboo fibers were well fitted to the Langmuir equation.Moreover,the monolayer adsorption capacity of nanoparticles in the concentration range(from 0.03 g/L to 0.6 g/L) studied,as calculated from Langmuir isotherm model at 25 C,was found to be 38.61 mg/g of fibers.The SEM images showed that the nanoparticles form a uniform monolayer on bamboo fiber surfaces. 展开更多
关键词 Adsorption Copolymer Cationic nanoparticles bamboo fibers
原文传递
Generation of 100 nJ pulse,1 W average power at 2μm from an intermode beating mode-locked all-fiber laser
15
作者 Jiaji Zhang Duanduan Wu +2 位作者 Ruwei Zhao Rongping Wang Shixun Dai 《High Power Laser Science and Engineering》 SCIE CAS CSCD 2019年第4期50-55,共6页
We report on the investigation of intermode beating mode-locked(IBML)pulse generation in a simple all-fiber Tm^3+-doped double clad fiber laser(TDFL).This IBML TDFL is implemented by matching longitudinal-mode frequen... We report on the investigation of intermode beating mode-locked(IBML)pulse generation in a simple all-fiber Tm^3+-doped double clad fiber laser(TDFL).This IBML TDFL is implemented by matching longitudinal-mode frequency between 793 nm laser and TDFL without extra mode locker.The central wavelength of 1983 nm,the fundamental pulse frequency of 9.6 MHz and the signal-to-noise ratio(SNR)of>50 dB are achieved in this IBML TDFL.With laser cavity optimization,the IBML TDFL can finally generate an average output power of 1.03 W with corresponding pulse energy of 107 nJ.These results can provide an easily accessible way to develop compact large-energy,highpower TDFLs. 展开更多
关键词 average output power intermode beating mode-locking Tm^3+-doped double clad fiber laser pulse energy
原文传递
A Method for Determining Surface Free Energy of Bamboo Fiber Materials by Applying Fowkes Theory and Using Computer Aided Machine Vision Based Measurement Technique 被引量:3
16
作者 陆军 张红涛 +1 位作者 魏德云 胡玉霞 《Journal of Shanghai Jiaotong university(Science)》 EI 2012年第5期593-597,共5页
The purpose of this study is to develop a standard methodology for measuring the surface free energy (SFE),and its component parts of bamboo fiber materials.The current methods was reviewed to determine the surface te... The purpose of this study is to develop a standard methodology for measuring the surface free energy (SFE),and its component parts of bamboo fiber materials.The current methods was reviewed to determine the surface tension of natural fibers and the disadvantages of techniques used were discussed.Although numerous techniques have been employed to characterize surface tension of natural fibers,it seems that the credibility of results obtained may often be dubious.In this paper,critical surface tension estimates were obtained from computer aided machine vision based measurement.Data were then analyzed by the least squares method to estimate the components of SFE.SFE was estimated by least squares analysis and also by Schultz' method.By using the Fowkes method the polar and disperse fractions of the surface free energy of bamboo fiber materials can be obtained.Strictly speaking,this method is based on a combination of the knowledge of Fowkes theory. SFE is desirable when adhesion is required,and it avoids some of the limitations of existing studies which has been proposed.The calculation steps described in this research are only intended to explain the methods.The results show that the method that only determines SFE as a single parameter may be unable to differentiate adequately between bamboo fiber materials,but it is feasible and very efficient.In order to obtain the maximum performance from the computer aided machine vision based measurement instruments,this measurement should be recommended and kept available for reference. 展开更多
关键词 surface free energy bamboo fiber materials Fowkes theory computer aided machine vision based measurement(CAMVBM) technique Schultz’ method
原文传递
Preliminary Study on Tensile and Impact Properties of Kenaf/Bamboo Fiber Reinforced Epoxy Composites 被引量:4
17
作者 Ahmad Safwan Mohammad Jawaid +1 位作者 Mohamed T.H.Sultan Azman Hassan 《Journal of Renewable Materials》 SCIE 2018年第5期529-535,共7页
The application of natural fibers as reinforcement in composite material has increased due to environmental concerns,low cost,degradability and health concerns.The purpose of this study is to identify the best type of... The application of natural fibers as reinforcement in composite material has increased due to environmental concerns,low cost,degradability and health concerns.The purpose of this study is to identify the best type of bamboo fibers to be used as reinforcement for kenaf(K)/bamboo hybrid composite.There were three types of bamboo fibers evaluated in this study which include bamboo mat(B),bamboo fabric(BF)and bamboo powder(BP).Chemical composition of B,BF,BP and K fibers were analyzed in this study.The effect of different types of bamboo fibers on tensile,impact,and morphological properties were investigated.The B/epoxy composites displayed the highest tensile strength(53.03 MPa)while K/epoxy composite had the highest tensile modulus(4.71 GPa).Scanning electron micrographs of B/epoxy composites displayed better fiber/matrix interfacial bonding in comparison to other studied composites.Results showed that impact strength of BF-based composite was highest(45.70 J/m).In conclusion,the tensile strength of B/epoxy composite is superior to the other bamboo reinforced composites and will be further evaluated in the next study. 展开更多
关键词 COMPOSITE KENAF bamboo natural fiber polymer composite tensile properties impact properties morphological properties
下载PDF
Effects of Bamboo Fiber Length and Loading on Mechanical,Thermal and Pulverization Properties of Phenolic Foam Composites 被引量:4
18
作者 Qiheng TANG Lu FANG Wenjing GUO 《Journal of Bioresources and Bioproducts》 EI 2019年第1期51-59,共9页
In order to improve the mechanical properties and toughness of phenolic foams,a reinforcement method using two kinds of bamboo fibers was optimized with respect to the fiber contents.The compressive and flexural prope... In order to improve the mechanical properties and toughness of phenolic foams,a reinforcement method using two kinds of bamboo fibers was optimized with respect to the fiber contents.The compressive and flexural properties,thermal stability,friability and morphology of the phenolic foam composites were studied.The mechanical properties of the pristine foam and composites were evaluated by measuring the compressive strength.The results showed that the greatest mechanical properties were achieved by incorporating 2.5wt%of the reinforcement,and the compressive and flexural strengths of the two composites increased by 26.21%and 24.35%,respectively,compared with that of the pristine foam.The results of thermogravimetric testing demonstrated that the addition of bamboo fiber imparted better thermal stability to the phenolic foam,which was mainly attributed to the higher initial thermal decomposition temperature of the bamboo fiber.However,the influences of both reinforcements on the thermal stability of the material were negligible.The incorporation of bamboo fiber decreased the friability of the phenolic foam.Furthermore,the reduction in friability of the foam composites with longer lengths were higher than that in foams with shorter bamboo fibers.Moreover,the morphology and cell sizes of the fiber-reinforced phenolic foams were analyzed by scanning electron microscopy,the results indicated strong bonding between the fibers and phenolic matrix,and the incorporation of the bamboo fibers into the foam resulted in increased cell size of the material.Finally,the thermal conductivity and flame resistance of the phenolic foams reinforced by the bamboo fibers were also measured. 展开更多
关键词 phenolic foam bamboo fiber composite mechanical property microstructure
原文传递
Effect of Steam Explosion Technology Main Parameters on Moso Bamboo and Poplar Fiber 被引量:2
19
作者 Biqing Shu Qin Ren +7 位作者 Lu Hong Zhongping Xiao Xiaoning Lu Wenya Wang Junbao Yu Naiqiang Fu Yiming Gu Jinjun Zheng 《Journal of Renewable Materials》 SCIE EI 2021年第3期585-597,共13页
One of the large-scale industrial applications of Moso bamboo and poplar in China is the production of standardized fiberboard.When making fiberboard,a steam blasting pretreatment without the addition of traditional a... One of the large-scale industrial applications of Moso bamboo and poplar in China is the production of standardized fiberboard.When making fiberboard,a steam blasting pretreatment without the addition of traditional adhesives has become increasingly popular because of its environmental friendliness and wide applicability.In this study,the steam explosion pretreatment of Moso bamboo and poplar was conducted.The steam explosion pressure and holding time were varied to determine the influence of these factors on fiber quality by investigating the morphology of the fiber,the mass ratio of the unexploded specimen at the end face,the chemical composition,and the tensile strength.The following conclusions were drawn:As the steam burst pressure and holding time increased,more cellulose and hemicellulose degradation occurred(the degradation of hemicellulose was greater than that of cellulose),the lignin content rose,and the fiber bundle strength decreased.The degradation of bamboo cellulose was slightly higher than that of poplar,and the degradation of poplar hemicellulose was significantly faster than that of bamboo.Furthermore,increasing the steam explosion pressure and pressure holding time could not effectively increase the lignin content.It is recommended to use a steam blasting pressure of 2.5 MPa or 3.0 MPa and a holding time of 180 s to perform steam blasting on bamboo and poplar specimens. 展开更多
关键词 fiber binderless fiberboard steam explosion moso bamboo POPLAR
下载PDF
Identification of Bamboo Viscose Fibers and Conventional Viscose Fibers 被引量:1
20
作者 彭丽桦 李卫东 王新厚 《Journal of Donghua University(English Edition)》 EI CAS 2012年第6期510-514,共5页
Bamboo viscose fibers and conventional viscose fibers were measured by optical microscopy, scanning electron microscopy (SEM), Fourier transform infrared spectrometer (FTIR), and thermogravimetric analyzer/FTIR spectr... Bamboo viscose fibers and conventional viscose fibers were measured by optical microscopy, scanning electron microscopy (SEM), Fourier transform infrared spectrometer (FTIR), and thermogravimetric analyzer/FTIR spectrometer (TG-FTIR) respectively. At last, the method based on the testing of the Fourier transform near infrared (NIR) spectra was proposed to identify these two kinds of fibers. The discrimination models between bamboo viscose fibers with conventional viscose fibers were built by means of Ward's algorithm and Hierarchical cluster analysis(HCA) after the first derivative and vector normalization pretreatment, and were verified finally. The results indicate that these two kinds of fibers are similar in their morphology both of cross-section and longitudinal direction. What's more, the FTIR spectra, the thermostability, and decomposition products of TG-FTIR experiment are similar, and the testing results contribute little to the effective identification of the two fibers. However, the accuracy of the NIR spectra model is high, and the two kinds of fibers can be classified into two separated groups to achieve the identification simply and exactly. 展开更多
关键词 bamboo viscose fibers conventional viscose fibers IDENTIFICATION near infrared (NIR) spectra cluster analysis
下载PDF
上一页 1 2 86 下一页 到第
使用帮助 返回顶部