期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Optimal mining sequence for coal faces under a bedding slope:insight from landslide prevention
1
作者 LI Qingmiao ZHAO Jianjun +3 位作者 LI Zhichao DENG Jie ZUO Jing LAI Qiyi 《Journal of Mountain Science》 SCIE CSCD 2024年第5期1775-1798,共24页
Repetitive mining beneath bedding slopes is identified as a critical factor in geomorphic disturbances, especially landslides and surface subsidence. Prior research has largely concentrated on surface deformation in p... Repetitive mining beneath bedding slopes is identified as a critical factor in geomorphic disturbances, especially landslides and surface subsidence. Prior research has largely concentrated on surface deformation in plains due to multi-seam coal mining and the instability of natural bedding slopes, yet the cumulative impact of different mining sequences on bedding slopes has been less explored. This study combines drone surveys and geological data to construct a comprehensive three-dimensional model of bedding slopes. Utilizing FLAC3D and PFC2D models, derived from laboratory experiments, it simulates stress, deformation, and failure dynamics of slopes under various mining sequences. Incorporating fractal dimension analysis, the research evaluates the stability of slopes in relation to different mining sequences. The findings reveal that mining in an upslope direction minimizes disruption to overlying strata. Initiating extraction from lower segments increases tensile-shear stress in coal pillar overburdens, resulting in greater creep deformation towards the downslope than when starting from upper segments, potentially leading to localized landslides and widespread creep deformation in mined-out areas. The downslope upward mining sequence exhibits the least fractal dimensions, indicating minimal disturbance to both strata and surface. While all five mining scenarios maintain good slope stability under normal conditions, recalibrated stability assessments based on fractal dimensions suggest that downslope upward mining offers the highest stability under rainfall, contrasting with the lower stability and potential instability risks of upslope downward mining. These insights are pivotal for mining operations and geological hazard mitigation in multi-seam coal exploitation on bedding slopes. 展开更多
关键词 bedding rock landslides Mining-induced deformation bedding slope stability Underground mining sequences Fractal-based strength reduction method
下载PDF
Identifying the spatiotemporal characteristics of individual red bed landslides: a case study in Western Yunnan, China 被引量:3
2
作者 ZHAO Xin LI Guo +3 位作者 ZHAO Zhi-fang LI Chun-xiao CHEN Qi YE Xian 《Journal of Mountain Science》 SCIE CSCD 2022年第6期1748-1766,共19页
Strata in red bed areas have typical characteristics of soft-hard interbedding and high sensitivity to water. Under the comprehensive action of internal stratigraphic structure and external hydrological factors, red b... Strata in red bed areas have typical characteristics of soft-hard interbedding and high sensitivity to water. Under the comprehensive action of internal stratigraphic structure and external hydrological factors, red bed landslides have highly complex spatiotemporal characteristics, presenting significant challenges to the prevention and control of landslide disasters in red bed areas, especially for slope and tunnel engineering projects. In this study, we applied an interdisciplinary approach combining small baseline subset interferometric synthetic aperture radar(SBAS-InSAR), deep displacement monitoring, and engineering geological surveying to identify the deformation mechanisms and spatiotemporal characteristics of the Abi landslide, an individual landslide that occurred in the red bed area of Western Yunnan, China. Surface deformation time series indicated that a basic deformation range developed by March 2020. Based on In SAR results and engineering geological analysis, the landslide surface could be divided into three zones: an upper sliding zone(US), a lower uplifted zone(LU), and a toe zone(Toe). LU was affected by the structure of the sliding bed with variable inclination. Using deep displacement curves combined with the geological profile, a set of sliding surfaces were identified between different lithology. The groundwater level standardization index(GLSI) and deformation normalization index(DNI) showed different quadratic relationships between US and LU. Verification using the Pearson correlation analysis shows that the correlation coefficients between model calculated results and measured data are 0.7933 and 0.7577, respectively, indicating that the DNI-GLSI models are applicable. A fast and short-lived deformation sub stage(ID-Fast) in the initial deformation stage was observed, and ID-Fast was driven by concentrated rainfall. 展开更多
关键词 Red bed landslide Spatiotemporal characteristic SBAS-InSAR Deep displacement monitoring Engineering geological survey Western Yunnan
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部