Distraction spinal cord injury is caused by some degree of distraction or longitudinal tension on the spinal cord and commonly occurs in patients who undergo corrective operation for severe spinal deformity.With the i...Distraction spinal cord injury is caused by some degree of distraction or longitudinal tension on the spinal cord and commonly occurs in patients who undergo corrective operation for severe spinal deformity.With the increased degree and duration of distraction,spinal cord injuries become more serious in terms of their neurophysiology,histology,and behavior.Very few studies have been published on the specific characteristics of distraction spinal cord injury.In this study,we systematically review 22 related studies involving animal models of distraction spinal cord injury,focusing particularly on the neurophysiological,histological,and behavioral characteristics of this disease.In addition,we summarize the mechanisms underlying primary and secondary injuries caused by distraction spinal cord injury and clarify the effects of different degrees and durations of distraction on the primary injuries associated with spinal cord injury.We provide new concepts for the establishment of a model of distraction spinal cord injury and related basic research,and provide reference guidelines for the clinical diagnosis and treatment of this disease.展开更多
The formation mechanism of calcium vanadate and manganese vanadate and the difference between calcium and manganese in the reaction with vanadium are basic issues in the calcification roasting and manganese roasting p...The formation mechanism of calcium vanadate and manganese vanadate and the difference between calcium and manganese in the reaction with vanadium are basic issues in the calcification roasting and manganese roasting process with vanadium slag.In this work,CaO–V_(2)O_(5) and MnO_(2)–V_(2)O_(5) diffusion couples were prepared and roasted for different time periods to illustrate and compare the diffusion reaction mechanisms.Then,the changes in the diffusion product and diffusion coefficient were investigated and calculated based on scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS) analysis.Results show that with the extension of the roasting time,the diffusion reaction gradually proceeds among the CaO–V_(2)O_(5) and MnO_(2)–V_(2)O_(5) diffusion couples.The regional boundaries of calcium and vanadium are easily identifiable for the CaO–V_(2)O_(5) diffusion couple.Meanwhile,for the MnO_(2)–V_(2)O_(5) diffusion couple,MnO_(2) gradually decomposes to form Mn_(2)O_(3),and vanadium diffuses into the interior of Mn_(2)O_(3).Only a part of vanadium combines with manganese to form the diffusion production layer.CaV_(2)O_(6) and MnV_(2)O_(6) are the interfacial reaction products of the CaO–V_(2)O_(5) and MnO_(2)–V_(2)O_(5) diffusion couples,respectively,whose thicknesses are 39.85 and 32.13μm when roasted for 16 h.After 16 h,both diffusion couples reach the reaction equilibrium due to the limitation of diffusion.The diffusion coefficient of the CaO–V_(2)O_(5) diffusion couple is higher than that of the MnO_(2)–V_(2)O_(5) diffusion couple for the same roasting time,and the diffusion reaction between vanadium and calcium is easier than that between vanadium and manganese.展开更多
A multi-purpose prototype test system is developed to study the mechanical behavior of tunnel sup-porting structure,including a modular counterforce device,a powerful loading equipment,an advanced intelligent manageme...A multi-purpose prototype test system is developed to study the mechanical behavior of tunnel sup-porting structure,including a modular counterforce device,a powerful loading equipment,an advanced intelligent management system and an efficient noncontact deformation measurement system.The functions of the prototype test system are adjustable size and shape of the modular counterforce structure,sufficient load reserve and accurate loading,multi-connection linkage intelligent management,and high-precision and continuously positioned noncontact deformation measurement.The modular counterforce structure is currently the largest in the world,with an outer diameter of 20.5 m,an inner diameter of 16.5 m and a height of 6 m.The case application proves that the prototype test system can reproduce the mechanical behavior of the tunnel lining during load-bearing,deformation and failure processes in detail.展开更多
Considering the serious barriers/issues induced by the accumulated starch generated in white water system of old corrugated cardboard(OCC)pulping process,large amounts of accumulated starch in white water would be dec...Considering the serious barriers/issues induced by the accumulated starch generated in white water system of old corrugated cardboard(OCC)pulping process,large amounts of accumulated starch in white water would be decomposed by microorganisms and could not be utilized,thereby resulting in severe resource wastage and environmental pollution.This study mainly explored the effects of biodegradation/hydrolysis conditions of the two types of starch substrates(native starch and enzymatically(α-amylase)hydrolyzed starch),which were treated via microorganism degradation within the simulated white water from OCC pulping system and their biodegradation products on the key properties were characterized via X-ray diffraction(XRD),Fourier-transform infrared spectroscopy(FT-IR),and gel permeation chromatography(GPC)technologies.The effects of system temperature,pH value,starch concentration,and biodegradation time on starch biodegradation ratio and the characteristics of obtained biodegradated products from the two types of starches were studied.In addition,the effect ofα-amylase dosage on the biodegradation ratio of enzymatically hydrolyzed starch and its properties was investigated.It was found that the native starch presented a maximal degradation ratio at a system temperature of 55℃and pH value range of 5-7,respectively,the corresponding starch concentration within simulated white water system was 200 mg/L.Whereas the enzymatically hydrolyzed starch exhibited a highest degradation ratio at a system temperature of 50℃and pH value of 5.5,respectively,and the corresponding starch concentration within simulated white water system was 100 mg/L.It was verified that native starch is more readily bio-hydrolyzed and biodegradation-susceptive by microorganisms in simulated white water system of OCC pulping process,while the enzymatically hydrolyzed starch exhibits better biodegradation/hydrolysis resistance to the microbial degradation than that of native starch.This study provides a practical and interesting approach to investigate the starch hydrolysis or biodegradation behaviors in white water system of OCC pulping process,which would greatly contribute to the full recycling and valorized application of starch as a versatile additive during paperboard production.展开更多
BACKGROUND Non-alcoholic fatty liver disease(NAFLD)is the most common liver disease worldwide,affecting about 1/4th of the global population and causing a huge global economic burden.To date,no drugs have been approve...BACKGROUND Non-alcoholic fatty liver disease(NAFLD)is the most common liver disease worldwide,affecting about 1/4th of the global population and causing a huge global economic burden.To date,no drugs have been approved for the treatment of NAFLD,making the correction of unhealthy lifestyles the principle method of treatment.Identifying patients with poor adherence to lifestyle correction and attempting to improve their adherence are therefore very important.AIM To develop and validate a scale that can rapidly assess the adherence of patients with NAFLD to lifestyle interventions.METHODS The Exercise and Diet Adherence Scale(EDAS)was designed based on com-pilation using the Delphi method,and its reliability was subsequently evaluated.Demographic and laboratory indicators were measured,and patients completed the EDAS questionnaire at baseline and after 6 months.The efficacy of the EDAS was evaluated in the initial cohort.Subsequently,the efficacy of the EDAS was internally verified in a validation cohort.RESULTS The EDAS consisted of 33 items in six dimensions,with a total of 165 points.Total EDAS score correlated significantly with daily number of exercise and daily reduction in calorie intake(P<0.05 each),but not with overall weight loss.A total score of 116 was excellent in predicting adherence to daily reduction in calorie intake(>500 kacl/d),(sensitivity/specificity was 100.0%/75.8%),while patients score below 97 could nearly rule out the possibility of daily exercise(sensitivity/specificity was 89.5%/44.4%).Total EDAS scores≥116,97-115,and<97 points were indicative of good,average,and poor adherence,respectively,to diet and exercise recommendations.CONCLUSION The EDAS can reliably assess the adherence of patients with NAFLD to lifestyle interventions and have clinical application in this population.展开更多
Magnesium(Mg)alloys are considered to be a new generation of revolutionary medical metals.Laser-beam powder bed fusion(PBF-LB)is suitable for fabricating metal implants withpersonalized and complicated structures.Howe...Magnesium(Mg)alloys are considered to be a new generation of revolutionary medical metals.Laser-beam powder bed fusion(PBF-LB)is suitable for fabricating metal implants withpersonalized and complicated structures.However,the as-built part usually exhibits undesirable microstructure and unsatisfactory performance.In this work,WE43 parts were firstly fabricated by PBF-LB and then subjected to heat treatment.Although a high densification rate of 99.91%was achieved using suitable processes,the as-built parts exhibited anisotropic and layeredmicrostructure with heterogeneously precipitated Nd-rich intermetallic.After heat treatment,fine and nano-scaled Mg24Y5particles were precipitated.Meanwhile,theα-Mg grainsunderwent recrystallization and turned coarsened slightly,which effectively weakened thetexture intensity and reduced the anisotropy.As a consequence,the yield strength and ultimate tensile strength were significantly improved to(250.2±3.5)MPa and(312±3.7)MPa,respectively,while the elongation was still maintained at a high level of 15.2%.Furthermore,the homogenized microstructure reduced the tendency of localized corrosion and favoredthe development of uniform passivation film.Thus,the degradation rate of WE43 parts was decreased by an order of magnitude.Besides,in-vitro cell experiments proved their favorable biocompatibility.展开更多
The snap-through behaviors and nonlinear vibrations are investigated for a bistable composite laminated cantilever shell subjected to transversal foundation excitation based on experimental and theoretical approaches....The snap-through behaviors and nonlinear vibrations are investigated for a bistable composite laminated cantilever shell subjected to transversal foundation excitation based on experimental and theoretical approaches.An improved experimental specimen is designed in order to satisfy the cantilever support boundary condition,which is composed of an asymmetric region and a symmetric region.The symmetric region of the experimental specimen is entirely clamped,which is rigidly connected to an electromagnetic shaker,while the asymmetric region remains free of constraint.Different motion paths are realized for the bistable cantilever shell by changing the input signal levels of the electromagnetic shaker,and the displacement responses of the shell are collected by the laser displacement sensors.The numerical simulation is conducted based on the established theoretical model of the bistable composite laminated cantilever shell,and an off-axis three-dimensional dynamic snap-through domain is obtained.The numerical solutions are in good agreement with the experimental results.The nonlinear stiffness characteristics,dynamic snap-through domain,and chaos and bifurcation behaviors of the shell are quantitatively analyzed.Due to the asymmetry of the boundary condition and the shell,the upper stable-state of the shell exhibits an obvious soft spring stiffness characteristic,and the lower stable-state shows a linear stiffness characteristic of the shell.展开更多
A growing number of studies have demonstrated that repeated exposure to sevoflurane during development results in persistent social abnormalities and cognitive impairment.Davunetide,an active fragment of the activity-...A growing number of studies have demonstrated that repeated exposure to sevoflurane during development results in persistent social abnormalities and cognitive impairment.Davunetide,an active fragment of the activity-dependent neuroprotective protein(ADNP),has been implicated in social and cognitive protection.However,the potential of davunetide to attenuate social deficits following sevoflurane exposure and the underlying developmental mechanisms remain poorly understood.In this study,ribosome and proteome profiles were analyzed to investigate the molecular basis of sevoflurane-induced social deficits in neonatal mice.The neuropathological basis was also explored using Golgi staining,morphological analysis,western blotting,electrophysiological analysis,and behavioral analysis.Results indicated that ADNP was significantly down-regulated following developmental exposure to sevoflurane.In adulthood,anterior cingulate cortex(ACC)neurons exposed to sevoflurane exhibited a decrease in dendrite number,total dendrite length,and spine density.Furthermore,the expression levels of Homer,PSD95,synaptophysin,and vglut2 were significantly reduced in the sevoflurane group.Patch-clamp recordings indicated reductions in both the frequency and amplitude of miniature excitatory postsynaptic currents(mEPSCs).Notably,davunetide significantly ameliorated the synaptic defects,social behavior deficits,and cognitive impairments induced by sevoflurane.Mechanistic analysis revealed that loss of ADNP led to dysregulation of Ca^(2+)activity via the Wnt/β-catenin signaling,resulting in decreased expression of synaptic proteins.Suppression of Wnt signaling was restored in the davunetide-treated group.Thus,ADNP was identified as a promising therapeutic target for the prevention and treatment of neurodevelopmental toxicity caused by general anesthetics.This study provides important insights into the mechanisms underlying social and cognitive disturbances caused by sevoflurane exposure in neonatal mice and elucidates the regulatory pathways involved.展开更多
High-entropy alloys(HEAs)possess outstanding features such as corrosion resistance,irradiation resistance,and good mechan-ical properties.A few HEAs have found applications in the fields of aerospace and defense.Exten...High-entropy alloys(HEAs)possess outstanding features such as corrosion resistance,irradiation resistance,and good mechan-ical properties.A few HEAs have found applications in the fields of aerospace and defense.Extensive studies on the deformation mech-anisms of HEAs can guide microstructure control and toughness design,which is vital for understanding and studying state-of-the-art structural materials.Synchrotron X-ray and neutron diffraction are necessary techniques for materials science research,especially for in situ coupling of physical/chemical fields and for resolving macro/microcrystallographic information on materials.Recently,several re-searchers have applied synchrotron X-ray and neutron diffraction methods to study the deformation mechanisms,phase transformations,stress behaviors,and in situ processes of HEAs,such as variable-temperature,high-pressure,and hydrogenation processes.In this review,the principles and development of synchrotron X-ray and neutron diffraction are presented,and their applications in the deformation mechanisms of HEAs are discussed.The factors that influence the deformation mechanisms of HEAs are also outlined.This review fo-cuses on the microstructures and micromechanical behaviors during tension/compression or creep/fatigue deformation and the application of synchrotron X-ray and neutron diffraction methods to the characterization of dislocations,stacking faults,twins,phases,and intergrain/interphase stress changes.Perspectives on future developments of synchrotron X-ray and neutron diffraction and on research directions on the deformation mechanisms of novel metals are discussed.展开更多
Proper regulation of synapse formation and elimination is critical for establishing mature neuronal circuits and maintaining brain function.Synaptic abnormalities,such as defects in the density and morphology of posts...Proper regulation of synapse formation and elimination is critical for establishing mature neuronal circuits and maintaining brain function.Synaptic abnormalities,such as defects in the density and morphology of postsynaptic dendritic spines,underlie the pathology of various neuropsychiatric disorders.Protocadherin 17(PCDH17)is associated with major mood disorders,including bipolar disorder and depression.However,the molecular mechanisms by which PCDH17 regulates spine number,morphology,and behavior remain elusive.In this study,we found that PCDH17 functions at postsynaptic sites,restricting the number and size of dendritic spines in excitatory neurons.Selective overexpression of PCDH17 in the ventral hippocampal CA1 results in spine loss and anxiety-and depression-like behaviors in mice.Mechanistically,PCDH17 interacts with actin-relevant proteins and regulates actin filament(F-actin)organization.Specifically,PCDH17 binds to ROCK2,increasing its expression and subsequently enhancing the activity of downstream targets such as LIMK1 and the phosphorylation of cofilin serine-3(Ser3).Inhibition of ROCK2 activity with belumosudil(KD025)ameliorates the defective F-actin organization and spine structure induced by PCDH17 overexpression,suggesting that ROCK2 mediates the effects of PCDH17 on F-actin content and spine development.Hence,these findings reveal a novel mechanism by which PCDH17 regulates synapse development and behavior,providing pathological insights into the neurobiological basis of mood disorders.展开更多
The Ti-5Al-2Sn-4Zr-4Mo-2Cr-1Fe(β-CEZ)alloy is considered as a potential structural material in the aviation industry due to its outstanding strength and corrosion resistance.Electrochemical machining(ECM)is an effici...The Ti-5Al-2Sn-4Zr-4Mo-2Cr-1Fe(β-CEZ)alloy is considered as a potential structural material in the aviation industry due to its outstanding strength and corrosion resistance.Electrochemical machining(ECM)is an efficient and low-cost technology for manufacturing theβ-CEZ alloy.In ECM,the machining parameter selection and tool design are based on the electrochemical dissolution behavior of the materials.In this study,the electrochemical dissolution behaviors of theβ-CEZ and Ti-6Al-4V(TC4)alloys in NaNO3solution are discussed.The open circuit potential(OCP),Tafel polarization,potentiodynamic polarization,electrochemical impedance spectroscopy(EIS),and current efficiency curves of theβ-CEZ and TC4 alloys are analyzed.The results show that,compared to the TC4 alloy,the passivation film structure is denser and the charge transfer resistance in the dissolution process is greater for theβ-CEZ alloy.Moreover,the dissolved surface morphology of the two titanium-based alloys under different current densities are analyzed.Under low current densities,theβ-CEZ alloy surface comprises dissolution pits and dissolved products,while the TC4 alloy surface comprises a porous honeycomb structure.Under high current densities,the surface waviness of both the alloys improves and the TC4 alloy surface is flatter and smoother than theβ-CEZ alloy surface.Finally,the electrochemical dissolution models ofβ-CEZ and TC4 alloys are proposed.展开更多
The collapse pressure is a key parameter when RTPs are applied in harsh deep-water environments.To investigate the collapse of RTPs,numerical simulations and hydrostatic pressure tests are conducted.For the numerical ...The collapse pressure is a key parameter when RTPs are applied in harsh deep-water environments.To investigate the collapse of RTPs,numerical simulations and hydrostatic pressure tests are conducted.For the numerical simulations,the eigenvalue analysis and Riks analysis are combined,in which the Hashin failure criterion and fracture energy stiffness degradation model are used to simulate the progressive failure of composites,and the“infinite”boundary conditions are applied to eliminate the boundary effects.As for the hydrostatic pressure tests,RTP specimens were placed in a hydrostatic chamber after filled with water.It has been observed that the cross-section of the middle part collapses when it reaches the maximum pressure.The collapse pressure obtained from the numerical simulations agrees well with that in the experiment.Meanwhile,the applicability of NASA SP-8007 formula on the collapse pressure prediction was also discussed.It has a relatively greater difference because of the ignorance of the progressive failure of composites.For the parametric study,it is found that RTPs have much higher first-ply-failure pressure when the winding angles are between 50°and 70°.Besides,the effect of debonding and initial ovality,and the contribution of the liner and coating are also discussed.展开更多
BACKGROUND Parental behaviors are key in shaping children’s psychological and behavioral development,crucial for early identification and prevention of mental health issues,reducing psychological trauma in childhood....BACKGROUND Parental behaviors are key in shaping children’s psychological and behavioral development,crucial for early identification and prevention of mental health issues,reducing psychological trauma in childhood.AIM To investigate the relationship between parenting behaviors and behavioral and emotional issues in preschool children.METHODS From October 2017 to May 2018,7 kindergartens in Ma’anshan City were selected to conduct a parent self-filled questionnaire-Health Development Survey of Preschool Children.Children’s Strength and Difficulties Questionnaire(Parent Version)was applied to measures the children’s behavioral and emotional performance.Parenting behavior was evaluated using the Parental Behavior Inventory.Binomial logistic regression model was used to analyze the association between the detection rate of preschool children’s behavior and emotional problems and their parenting behaviors.RESULTS High level of parental support/participation was negatively correlated with conduct problems,abnormal hyperactivity,abnormal total difficulty scores and abnormal prosocial behavior problems.High level of maternal support/participation was negatively correlated with abnormal emotional symptoms and abnormal peer interaction in children.High level of parental hostility/coercion was positively correlated with abnormal emotional symptoms,abnormal conduct problems,abnormal hyperactivity,abnormal peer interaction,and abnormal total difficulty scores in children(all P<0.05).Moreover,paternal parenting behaviors had similarly effects on behavior and emotional problems of preschool children compared with maternal parenting behaviors(all P>0.05),after calculating ratio of odds ratio values.CONCLUSION Our study found that parenting behaviors are associated with behavioral and emotional issues in preschool children.Overall,the more supportive or involved the parents are,the fewer behavioral and emotional problems the children experience;conversely,the more hostile or controlling the parents are,the more behavioral and emotional problems the children face.Moreover,the impact of fathers’parenting behaviors on preschool children’s behavior and emotions is no less significant than that of mothers’parenting behaviors.展开更多
In this editorial,I comment on the article“Association of preschool children behavior and emotional problems with the parenting behavior of both parents”which was published in the latest issue of“World Journal of C...In this editorial,I comment on the article“Association of preschool children behavior and emotional problems with the parenting behavior of both parents”which was published in the latest issue of“World Journal of Clinical Cases”that demonstrates the prevalence of behavioral disorders in preschool children.Therefore I am focused on parenting which is the most effective factor shown to affect the development and continuity of these behaviors.The management of child behavior problems is crucial.Children in early ages,especially preschoolers who are in the first 5 years of life,are influenced by dramatic changes in various aspects of development,such as social,emotional,and physical.Also,children experience many changes linked to different developmental tasks,such as discovering themselves,getting new friendships,and adapting to a new environment.In this period,parents have a critical role in supporting child development.If parents do not manage and overcome their child’s misbehavior,it could be transformed into psychosocial problems in adulthood.Parenting is the most powerful predictor in the social development of preschool children.Several studies have shown that to reduce the child’s emotional and behavioral problems,a warm relationship between parents and children is needed.In addition,recent studies have demonstrated significant relationships between family regulation factors and parenting,as well as with child behaviors.展开更多
The pointwise space-time behaviors of the Green’s function and the global solution to the Vlasov-Poisson-Fokker-Planck(VPFP)system in three dimensional space are studied in this paper.It is shown that the Green’s fu...The pointwise space-time behaviors of the Green’s function and the global solution to the Vlasov-Poisson-Fokker-Planck(VPFP)system in three dimensional space are studied in this paper.It is shown that the Green’s function consists of the diffusion waves decaying exponentially in time but algebraically in space,and the singular kinetic waves which become smooth for all(t,x,v)when t>0.Furthermore,we establish the pointwise space-time behaviors of the global solution to the nonlinear VPFP system when the initial data is not necessarily smooth in terms of the Green’s function.展开更多
CO_(2)dissolution into an aqueous phase and water evaporation into a gaseous phase takes place during CO_(2)injection into an oil reservoir.This study aims to evaluate the phase behaviors of the oil-gas-water system i...CO_(2)dissolution into an aqueous phase and water evaporation into a gaseous phase takes place during CO_(2)injection into an oil reservoir.This study aims to evaluate the phase behaviors of the oil-gas-water system in the displacement of crude oil by CO_(2).The composition of the JL oilfield in the northeast of China is taken as an example.The flash calculation of the oil-gas-water system was performed,based on the method presented by Li and Nghiem.The research results show that CO_(2)dissolution in the aqueous phase declines as the NaCl concentration in formation water rises.CO_(2)injection is beneficial for the evaporation of formation water.The NaCl concentration in formation water has little effect on water evaporation and dissolved-gas escape.When the injection-gas mole fraction of CO_(2)is 0.5,CO_(2)injection can reverse the phase behavior of the petroleum mixture and the oil-gas system is converted to a pure gas-condensate system.For CO_(2)injection,water vapor has little effect on the miscibility of multiple contacts,but can reduce the miscibility of the first contact.展开更多
This paper investigates the interface mechanical behavior of flexible piles with L_p/D>10 under lateral load and an overturning moment in monotonic loading conditions.To modify the beam-on-Winkler-foundation model ...This paper investigates the interface mechanical behavior of flexible piles with L_p/D>10 under lateral load and an overturning moment in monotonic loading conditions.To modify the beam-on-Winkler-foundation model of piles in offshore wind farms,the energy-based variational method is used.The soil is treated as a multi-layered elastic continuum with the assumption of three-dimensional displacements,the pile modeled as an Euler-Bernoulli beam.A series of cases using MATLAB programming was conducted to investigate the simplified equations of initial stiffness.The results indicated that the interaction between soil layers and the applied force position should be taken into account in calculating the horizontal soil resistance.Additionally,the distributed moment had a limiting effect on the lateral capacity of a flexible pile.Moreover,to account for the more realistic conditions of OWT systems,field data from the Donghai Bridge offshore wind farm were used.展开更多
China Fusion Engineering Test Reactor(CFETR)is China's self-designed and ongoing next-generation fusion reactor project.Tritium confinement systems in CFETR guarantee that the radiation level remains below the saf...China Fusion Engineering Test Reactor(CFETR)is China's self-designed and ongoing next-generation fusion reactor project.Tritium confinement systems in CFETR guarantee that the radiation level remains below the safety limit during tritium handling and operation in the fuel cycle system.Our tritium technology team is responsible for studying tritium transport behavior in the CFETR tritium safety confinement systems of the National Key R&D Program of China launched in 2017,and we are conducting CFETR tritium plant safety analysis by using CFD software.In this paper,the tritium migration and removal behavior were studied under a postulated accident condition for the Tokamak Exhaust Processing system of CFETR.The quantitative results of the transport behavior of tritium in the process room and glove box during the whole accident sequence(e.g.,tritium release,alarm,isolation,and tritium removal)have been presented.The results support the detailed design and engineering demonstration-related research of CFETR tritium plant.展开更多
BACKGROUND Depression is a common mental disorder among college students.The main symptoms include being persistent low mood,sad emotional experiences,lack of pleasure,listlessness,and impaired cognitive function acco...BACKGROUND Depression is a common mental disorder among college students.The main symptoms include being persistent low mood,sad emotional experiences,lack of pleasure,listlessness,and impaired cognitive function accompanied by tendencies of self-harm and suicide.AIM To clarify the pathways and effects of the behavioral activation system between physical activity and depressive symptoms in college students with depressive symptoms.METHODS This cross-sectional research screened 3047 college students.Of these,472 had depressive symptoms,with a depression detection rate of 15.49%.Furthermore,442 college students with depressive symptoms were analyzed.A one-way analysis of variance and Pearson’s correlation,linear regression,and structural equation modeling analyses were used to explore the correlations and pathways of the interactions between the variables.RESULTS Depressive symptoms were significantly negatively correlated with physical activity(r=-0.175,P<0.001),the behavioral activation system(r=-0.197,P<0.001),and drive(r=-0.113,P=0.017).Furthermore,it was negatively correlated with fun-seeking(FS)(r=-0.055,P=0.251);however,it was not significant.Physical activity was significantly positively correlated with reward responsiveness(RR)(r=0.141,P=0.003)and drive(r=0.124,P=0.009)and not significantly positively correlated with FS(r=0.090,P=0.058).The mediating effect of RR between physical activity and depressive symptoms was significant[B=-0.025,95%confidence interval(95%CI):-0.051 to-0.008,P=0.001].The direct and total effects of physical activity on depressive symptoms and were significant(B=-0.150,95%CI:-0.233 to-0.073,P<0.001;B=-0.175,95%CI:-0.260 to-0.099,P<0.001),respectively.CONCLUSION As physical activity levels increased,depression scores among college students decreased.The mediating effect of RR between physical activity and depressive symptoms was significant.Therefore,colleges and universities should encourage college students with depression to increase their physical activity and improve their behavioral activation system.Particular attention should be paid to RR,which may reduce the prevalence of depressive symptoms.展开更多
The Trait Activation Theory(TAT)is widely regarded as the most influential personality theory approach in psychology.The purpose of this study is to analyze the TAT’s role in the contemporary workplace.Which personal...The Trait Activation Theory(TAT)is widely regarded as the most influential personality theory approach in psychology.The purpose of this study is to analyze the TAT’s role in the contemporary workplace.Which personality traits are more likely to predict work success?Which characteristics should businesses prioritize throughout the recruiting and selection processes?According to the Trait Activation Theory,what is the significance of motivation in the workplace and how can employers find employees who can be more productive,efficient,and involved in the organization’s goals?A systematic review of past recent research was used to answer the questions raised above.Following the gathering and examination of multiple recent publications on the issue,it was determined that the use of this model had a favorable impact on individual and group performance,working relationships,manager job performance,and workplace creativity.展开更多
基金supported by the National Natural Science Foundation of China,No.81772421(to YH).
文摘Distraction spinal cord injury is caused by some degree of distraction or longitudinal tension on the spinal cord and commonly occurs in patients who undergo corrective operation for severe spinal deformity.With the increased degree and duration of distraction,spinal cord injuries become more serious in terms of their neurophysiology,histology,and behavior.Very few studies have been published on the specific characteristics of distraction spinal cord injury.In this study,we systematically review 22 related studies involving animal models of distraction spinal cord injury,focusing particularly on the neurophysiological,histological,and behavioral characteristics of this disease.In addition,we summarize the mechanisms underlying primary and secondary injuries caused by distraction spinal cord injury and clarify the effects of different degrees and durations of distraction on the primary injuries associated with spinal cord injury.We provide new concepts for the establishment of a model of distraction spinal cord injury and related basic research,and provide reference guidelines for the clinical diagnosis and treatment of this disease.
基金supported by the National Natural Science Foundation of China(Nos.52174277 and 51874077)the Fundamental Funds for the Central Universities,China(No.N2225032)+1 种基金the China Postdoctoral Science Foundation(No.2022M720683)the Postdoctoral Fund of Northeastern University,China。
文摘The formation mechanism of calcium vanadate and manganese vanadate and the difference between calcium and manganese in the reaction with vanadium are basic issues in the calcification roasting and manganese roasting process with vanadium slag.In this work,CaO–V_(2)O_(5) and MnO_(2)–V_(2)O_(5) diffusion couples were prepared and roasted for different time periods to illustrate and compare the diffusion reaction mechanisms.Then,the changes in the diffusion product and diffusion coefficient were investigated and calculated based on scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS) analysis.Results show that with the extension of the roasting time,the diffusion reaction gradually proceeds among the CaO–V_(2)O_(5) and MnO_(2)–V_(2)O_(5) diffusion couples.The regional boundaries of calcium and vanadium are easily identifiable for the CaO–V_(2)O_(5) diffusion couple.Meanwhile,for the MnO_(2)–V_(2)O_(5) diffusion couple,MnO_(2) gradually decomposes to form Mn_(2)O_(3),and vanadium diffuses into the interior of Mn_(2)O_(3).Only a part of vanadium combines with manganese to form the diffusion production layer.CaV_(2)O_(6) and MnV_(2)O_(6) are the interfacial reaction products of the CaO–V_(2)O_(5) and MnO_(2)–V_(2)O_(5) diffusion couples,respectively,whose thicknesses are 39.85 and 32.13μm when roasted for 16 h.After 16 h,both diffusion couples reach the reaction equilibrium due to the limitation of diffusion.The diffusion coefficient of the CaO–V_(2)O_(5) diffusion couple is higher than that of the MnO_(2)–V_(2)O_(5) diffusion couple for the same roasting time,and the diffusion reaction between vanadium and calcium is easier than that between vanadium and manganese.
文摘A multi-purpose prototype test system is developed to study the mechanical behavior of tunnel sup-porting structure,including a modular counterforce device,a powerful loading equipment,an advanced intelligent management system and an efficient noncontact deformation measurement system.The functions of the prototype test system are adjustable size and shape of the modular counterforce structure,sufficient load reserve and accurate loading,multi-connection linkage intelligent management,and high-precision and continuously positioned noncontact deformation measurement.The modular counterforce structure is currently the largest in the world,with an outer diameter of 20.5 m,an inner diameter of 16.5 m and a height of 6 m.The case application proves that the prototype test system can reproduce the mechanical behavior of the tunnel lining during load-bearing,deformation and failure processes in detail.
基金financial support from the China Postdoctoral Science Foundation (No. 2022M712379, No. 2021M692401)National Natural Science Foundation of China (No. 32101470)+3 种基金Foundation (No. 2021KF37) of Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control,College of Light Industry and Food Engineering, Guangxi UniversityFoundation of Tianjin Key Laboratory of Pulp & Paper of Tianjin University of Science & Technology (No. 202003, No. 202106)Research Foundation from the University of New BrunswickPost-Doctoral Fellow Programs from Zhejiang Jingxing Paper Co., Ltd
文摘Considering the serious barriers/issues induced by the accumulated starch generated in white water system of old corrugated cardboard(OCC)pulping process,large amounts of accumulated starch in white water would be decomposed by microorganisms and could not be utilized,thereby resulting in severe resource wastage and environmental pollution.This study mainly explored the effects of biodegradation/hydrolysis conditions of the two types of starch substrates(native starch and enzymatically(α-amylase)hydrolyzed starch),which were treated via microorganism degradation within the simulated white water from OCC pulping system and their biodegradation products on the key properties were characterized via X-ray diffraction(XRD),Fourier-transform infrared spectroscopy(FT-IR),and gel permeation chromatography(GPC)technologies.The effects of system temperature,pH value,starch concentration,and biodegradation time on starch biodegradation ratio and the characteristics of obtained biodegradated products from the two types of starches were studied.In addition,the effect ofα-amylase dosage on the biodegradation ratio of enzymatically hydrolyzed starch and its properties was investigated.It was found that the native starch presented a maximal degradation ratio at a system temperature of 55℃and pH value range of 5-7,respectively,the corresponding starch concentration within simulated white water system was 200 mg/L.Whereas the enzymatically hydrolyzed starch exhibited a highest degradation ratio at a system temperature of 50℃and pH value of 5.5,respectively,and the corresponding starch concentration within simulated white water system was 100 mg/L.It was verified that native starch is more readily bio-hydrolyzed and biodegradation-susceptive by microorganisms in simulated white water system of OCC pulping process,while the enzymatically hydrolyzed starch exhibits better biodegradation/hydrolysis resistance to the microbial degradation than that of native starch.This study provides a practical and interesting approach to investigate the starch hydrolysis or biodegradation behaviors in white water system of OCC pulping process,which would greatly contribute to the full recycling and valorized application of starch as a versatile additive during paperboard production.
基金the Science and Technology Foundation of Tianjin Municipal Health Bureau,No.12KG119Tianjin Key Medical Discipline(Specialty)Construction Project,No.TJYXZDXK-059B+1 种基金Tianjin Health Science and Technology Project key discipline special,No.TJWJ2022XK034Research project of Chinese traditional medicine and Chinese traditional medicine combined with Western medicine of Tianjin municipal health and Family Planning Commission,No.2021022.
文摘BACKGROUND Non-alcoholic fatty liver disease(NAFLD)is the most common liver disease worldwide,affecting about 1/4th of the global population and causing a huge global economic burden.To date,no drugs have been approved for the treatment of NAFLD,making the correction of unhealthy lifestyles the principle method of treatment.Identifying patients with poor adherence to lifestyle correction and attempting to improve their adherence are therefore very important.AIM To develop and validate a scale that can rapidly assess the adherence of patients with NAFLD to lifestyle interventions.METHODS The Exercise and Diet Adherence Scale(EDAS)was designed based on com-pilation using the Delphi method,and its reliability was subsequently evaluated.Demographic and laboratory indicators were measured,and patients completed the EDAS questionnaire at baseline and after 6 months.The efficacy of the EDAS was evaluated in the initial cohort.Subsequently,the efficacy of the EDAS was internally verified in a validation cohort.RESULTS The EDAS consisted of 33 items in six dimensions,with a total of 165 points.Total EDAS score correlated significantly with daily number of exercise and daily reduction in calorie intake(P<0.05 each),but not with overall weight loss.A total score of 116 was excellent in predicting adherence to daily reduction in calorie intake(>500 kacl/d),(sensitivity/specificity was 100.0%/75.8%),while patients score below 97 could nearly rule out the possibility of daily exercise(sensitivity/specificity was 89.5%/44.4%).Total EDAS scores≥116,97-115,and<97 points were indicative of good,average,and poor adherence,respectively,to diet and exercise recommendations.CONCLUSION The EDAS can reliably assess the adherence of patients with NAFLD to lifestyle interventions and have clinical application in this population.
基金supported by the following funds:National Natural Science Foundation of China(51935014,52165043)Jiangxi Provincial Cultivation Program for Academic and Technical Leaders of Major Subjects(20225BCJ23008)+1 种基金Jiangxi Provincial Natural Science Foundation(20224ACB204013,20224ACB214008)Scientific Research Project of Anhui Universities(KJ2021A1106)。
文摘Magnesium(Mg)alloys are considered to be a new generation of revolutionary medical metals.Laser-beam powder bed fusion(PBF-LB)is suitable for fabricating metal implants withpersonalized and complicated structures.However,the as-built part usually exhibits undesirable microstructure and unsatisfactory performance.In this work,WE43 parts were firstly fabricated by PBF-LB and then subjected to heat treatment.Although a high densification rate of 99.91%was achieved using suitable processes,the as-built parts exhibited anisotropic and layeredmicrostructure with heterogeneously precipitated Nd-rich intermetallic.After heat treatment,fine and nano-scaled Mg24Y5particles were precipitated.Meanwhile,theα-Mg grainsunderwent recrystallization and turned coarsened slightly,which effectively weakened thetexture intensity and reduced the anisotropy.As a consequence,the yield strength and ultimate tensile strength were significantly improved to(250.2±3.5)MPa and(312±3.7)MPa,respectively,while the elongation was still maintained at a high level of 15.2%.Furthermore,the homogenized microstructure reduced the tendency of localized corrosion and favoredthe development of uniform passivation film.Thus,the degradation rate of WE43 parts was decreased by an order of magnitude.Besides,in-vitro cell experiments proved their favorable biocompatibility.
基金Project supported by the National Natural Science Foundation of China(Nos.11832002 and 12072201)。
文摘The snap-through behaviors and nonlinear vibrations are investigated for a bistable composite laminated cantilever shell subjected to transversal foundation excitation based on experimental and theoretical approaches.An improved experimental specimen is designed in order to satisfy the cantilever support boundary condition,which is composed of an asymmetric region and a symmetric region.The symmetric region of the experimental specimen is entirely clamped,which is rigidly connected to an electromagnetic shaker,while the asymmetric region remains free of constraint.Different motion paths are realized for the bistable cantilever shell by changing the input signal levels of the electromagnetic shaker,and the displacement responses of the shell are collected by the laser displacement sensors.The numerical simulation is conducted based on the established theoretical model of the bistable composite laminated cantilever shell,and an off-axis three-dimensional dynamic snap-through domain is obtained.The numerical solutions are in good agreement with the experimental results.The nonlinear stiffness characteristics,dynamic snap-through domain,and chaos and bifurcation behaviors of the shell are quantitatively analyzed.Due to the asymmetry of the boundary condition and the shell,the upper stable-state of the shell exhibits an obvious soft spring stiffness characteristic,and the lower stable-state shows a linear stiffness characteristic of the shell.
基金supported by the National Natural Science Foundation of China(82171170,81971076,82371277 to H.Z.,82101345 to L.R.L.)。
文摘A growing number of studies have demonstrated that repeated exposure to sevoflurane during development results in persistent social abnormalities and cognitive impairment.Davunetide,an active fragment of the activity-dependent neuroprotective protein(ADNP),has been implicated in social and cognitive protection.However,the potential of davunetide to attenuate social deficits following sevoflurane exposure and the underlying developmental mechanisms remain poorly understood.In this study,ribosome and proteome profiles were analyzed to investigate the molecular basis of sevoflurane-induced social deficits in neonatal mice.The neuropathological basis was also explored using Golgi staining,morphological analysis,western blotting,electrophysiological analysis,and behavioral analysis.Results indicated that ADNP was significantly down-regulated following developmental exposure to sevoflurane.In adulthood,anterior cingulate cortex(ACC)neurons exposed to sevoflurane exhibited a decrease in dendrite number,total dendrite length,and spine density.Furthermore,the expression levels of Homer,PSD95,synaptophysin,and vglut2 were significantly reduced in the sevoflurane group.Patch-clamp recordings indicated reductions in both the frequency and amplitude of miniature excitatory postsynaptic currents(mEPSCs).Notably,davunetide significantly ameliorated the synaptic defects,social behavior deficits,and cognitive impairments induced by sevoflurane.Mechanistic analysis revealed that loss of ADNP led to dysregulation of Ca^(2+)activity via the Wnt/β-catenin signaling,resulting in decreased expression of synaptic proteins.Suppression of Wnt signaling was restored in the davunetide-treated group.Thus,ADNP was identified as a promising therapeutic target for the prevention and treatment of neurodevelopmental toxicity caused by general anesthetics.This study provides important insights into the mechanisms underlying social and cognitive disturbances caused by sevoflurane exposure in neonatal mice and elucidates the regulatory pathways involved.
基金supported by the National Natural Science Foundation of China(Nos.52171098 and 51921001)the State Key Laboratory for Advanced Metals and Materials(No.2022Z-02)+1 种基金the National High-level Personnel of Special Support Program(No.ZYZZ2021001)the Fundamental Research Funds for the Central Universities(Nos.FRF-TP-20-03C2 and FRF-BD-20-02B).
文摘High-entropy alloys(HEAs)possess outstanding features such as corrosion resistance,irradiation resistance,and good mechan-ical properties.A few HEAs have found applications in the fields of aerospace and defense.Extensive studies on the deformation mech-anisms of HEAs can guide microstructure control and toughness design,which is vital for understanding and studying state-of-the-art structural materials.Synchrotron X-ray and neutron diffraction are necessary techniques for materials science research,especially for in situ coupling of physical/chemical fields and for resolving macro/microcrystallographic information on materials.Recently,several re-searchers have applied synchrotron X-ray and neutron diffraction methods to study the deformation mechanisms,phase transformations,stress behaviors,and in situ processes of HEAs,such as variable-temperature,high-pressure,and hydrogenation processes.In this review,the principles and development of synchrotron X-ray and neutron diffraction are presented,and their applications in the deformation mechanisms of HEAs are discussed.The factors that influence the deformation mechanisms of HEAs are also outlined.This review fo-cuses on the microstructures and micromechanical behaviors during tension/compression or creep/fatigue deformation and the application of synchrotron X-ray and neutron diffraction methods to the characterization of dislocations,stacking faults,twins,phases,and intergrain/interphase stress changes.Perspectives on future developments of synchrotron X-ray and neutron diffraction and on research directions on the deformation mechanisms of novel metals are discussed.
基金supported by the National Natural Science Foundation of China(82171506 and 31872778)Discipline Innovative Engineering Plan(111 Program)of China(B13036)+3 种基金Key Laboratory Grant from Hunan Province(2016TP1006)Department of Science and Technology of Hunan Province(2021DK2001,Innovative Team Program 2019RS1010)Innovation-Driven Team Project from Central South University(2020CX016)Hunan Hundred Talents Program for Young Outstanding Scientists。
文摘Proper regulation of synapse formation and elimination is critical for establishing mature neuronal circuits and maintaining brain function.Synaptic abnormalities,such as defects in the density and morphology of postsynaptic dendritic spines,underlie the pathology of various neuropsychiatric disorders.Protocadherin 17(PCDH17)is associated with major mood disorders,including bipolar disorder and depression.However,the molecular mechanisms by which PCDH17 regulates spine number,morphology,and behavior remain elusive.In this study,we found that PCDH17 functions at postsynaptic sites,restricting the number and size of dendritic spines in excitatory neurons.Selective overexpression of PCDH17 in the ventral hippocampal CA1 results in spine loss and anxiety-and depression-like behaviors in mice.Mechanistically,PCDH17 interacts with actin-relevant proteins and regulates actin filament(F-actin)organization.Specifically,PCDH17 binds to ROCK2,increasing its expression and subsequently enhancing the activity of downstream targets such as LIMK1 and the phosphorylation of cofilin serine-3(Ser3).Inhibition of ROCK2 activity with belumosudil(KD025)ameliorates the defective F-actin organization and spine structure induced by PCDH17 overexpression,suggesting that ROCK2 mediates the effects of PCDH17 on F-actin content and spine development.Hence,these findings reveal a novel mechanism by which PCDH17 regulates synapse development and behavior,providing pathological insights into the neurobiological basis of mood disorders.
基金supported by the National Natural Science Foundation of China(No.92160301)the Industrial Technology Development Program,China(No.JCKY2021605 B026)。
文摘The Ti-5Al-2Sn-4Zr-4Mo-2Cr-1Fe(β-CEZ)alloy is considered as a potential structural material in the aviation industry due to its outstanding strength and corrosion resistance.Electrochemical machining(ECM)is an efficient and low-cost technology for manufacturing theβ-CEZ alloy.In ECM,the machining parameter selection and tool design are based on the electrochemical dissolution behavior of the materials.In this study,the electrochemical dissolution behaviors of theβ-CEZ and Ti-6Al-4V(TC4)alloys in NaNO3solution are discussed.The open circuit potential(OCP),Tafel polarization,potentiodynamic polarization,electrochemical impedance spectroscopy(EIS),and current efficiency curves of theβ-CEZ and TC4 alloys are analyzed.The results show that,compared to the TC4 alloy,the passivation film structure is denser and the charge transfer resistance in the dissolution process is greater for theβ-CEZ alloy.Moreover,the dissolved surface morphology of the two titanium-based alloys under different current densities are analyzed.Under low current densities,theβ-CEZ alloy surface comprises dissolution pits and dissolved products,while the TC4 alloy surface comprises a porous honeycomb structure.Under high current densities,the surface waviness of both the alloys improves and the TC4 alloy surface is flatter and smoother than theβ-CEZ alloy surface.Finally,the electrochemical dissolution models ofβ-CEZ and TC4 alloys are proposed.
基金financially supported by National Natural Science Foundation of China(Grant Nos.52088102,51879249)Fundamental Research Funds for the Central Universities(Grant No.202261055)。
文摘The collapse pressure is a key parameter when RTPs are applied in harsh deep-water environments.To investigate the collapse of RTPs,numerical simulations and hydrostatic pressure tests are conducted.For the numerical simulations,the eigenvalue analysis and Riks analysis are combined,in which the Hashin failure criterion and fracture energy stiffness degradation model are used to simulate the progressive failure of composites,and the“infinite”boundary conditions are applied to eliminate the boundary effects.As for the hydrostatic pressure tests,RTP specimens were placed in a hydrostatic chamber after filled with water.It has been observed that the cross-section of the middle part collapses when it reaches the maximum pressure.The collapse pressure obtained from the numerical simulations agrees well with that in the experiment.Meanwhile,the applicability of NASA SP-8007 formula on the collapse pressure prediction was also discussed.It has a relatively greater difference because of the ignorance of the progressive failure of composites.For the parametric study,it is found that RTPs have much higher first-ply-failure pressure when the winding angles are between 50°and 70°.Besides,the effect of debonding and initial ovality,and the contribution of the liner and coating are also discussed.
基金Supported by the National Natural Science Foundation of China,No.81330068.
文摘BACKGROUND Parental behaviors are key in shaping children’s psychological and behavioral development,crucial for early identification and prevention of mental health issues,reducing psychological trauma in childhood.AIM To investigate the relationship between parenting behaviors and behavioral and emotional issues in preschool children.METHODS From October 2017 to May 2018,7 kindergartens in Ma’anshan City were selected to conduct a parent self-filled questionnaire-Health Development Survey of Preschool Children.Children’s Strength and Difficulties Questionnaire(Parent Version)was applied to measures the children’s behavioral and emotional performance.Parenting behavior was evaluated using the Parental Behavior Inventory.Binomial logistic regression model was used to analyze the association between the detection rate of preschool children’s behavior and emotional problems and their parenting behaviors.RESULTS High level of parental support/participation was negatively correlated with conduct problems,abnormal hyperactivity,abnormal total difficulty scores and abnormal prosocial behavior problems.High level of maternal support/participation was negatively correlated with abnormal emotional symptoms and abnormal peer interaction in children.High level of parental hostility/coercion was positively correlated with abnormal emotional symptoms,abnormal conduct problems,abnormal hyperactivity,abnormal peer interaction,and abnormal total difficulty scores in children(all P<0.05).Moreover,paternal parenting behaviors had similarly effects on behavior and emotional problems of preschool children compared with maternal parenting behaviors(all P>0.05),after calculating ratio of odds ratio values.CONCLUSION Our study found that parenting behaviors are associated with behavioral and emotional issues in preschool children.Overall,the more supportive or involved the parents are,the fewer behavioral and emotional problems the children experience;conversely,the more hostile or controlling the parents are,the more behavioral and emotional problems the children face.Moreover,the impact of fathers’parenting behaviors on preschool children’s behavior and emotions is no less significant than that of mothers’parenting behaviors.
基金the main study who are focused on parenting style and preschoolers'behavioral problems and give an opportunity to me to comment on this issue.
文摘In this editorial,I comment on the article“Association of preschool children behavior and emotional problems with the parenting behavior of both parents”which was published in the latest issue of“World Journal of Clinical Cases”that demonstrates the prevalence of behavioral disorders in preschool children.Therefore I am focused on parenting which is the most effective factor shown to affect the development and continuity of these behaviors.The management of child behavior problems is crucial.Children in early ages,especially preschoolers who are in the first 5 years of life,are influenced by dramatic changes in various aspects of development,such as social,emotional,and physical.Also,children experience many changes linked to different developmental tasks,such as discovering themselves,getting new friendships,and adapting to a new environment.In this period,parents have a critical role in supporting child development.If parents do not manage and overcome their child’s misbehavior,it could be transformed into psychosocial problems in adulthood.Parenting is the most powerful predictor in the social development of preschool children.Several studies have shown that to reduce the child’s emotional and behavioral problems,a warm relationship between parents and children is needed.In addition,recent studies have demonstrated significant relationships between family regulation factors and parenting,as well as with child behaviors.
基金supported by National Natural Science Foundation of China(11671100 and 12171104)the National Science Fund for Excellent Young Scholars(11922107)Guangxi Natural Science Foundation(2018GXNSFAA138210 and 2019JJG110010)。
文摘The pointwise space-time behaviors of the Green’s function and the global solution to the Vlasov-Poisson-Fokker-Planck(VPFP)system in three dimensional space are studied in this paper.It is shown that the Green’s function consists of the diffusion waves decaying exponentially in time but algebraically in space,and the singular kinetic waves which become smooth for all(t,x,v)when t>0.Furthermore,we establish the pointwise space-time behaviors of the global solution to the nonlinear VPFP system when the initial data is not necessarily smooth in terms of the Green’s function.
基金The National Major Science and Technology Projects of China(2017ZX05030)supported this work。
文摘CO_(2)dissolution into an aqueous phase and water evaporation into a gaseous phase takes place during CO_(2)injection into an oil reservoir.This study aims to evaluate the phase behaviors of the oil-gas-water system in the displacement of crude oil by CO_(2).The composition of the JL oilfield in the northeast of China is taken as an example.The flash calculation of the oil-gas-water system was performed,based on the method presented by Li and Nghiem.The research results show that CO_(2)dissolution in the aqueous phase declines as the NaCl concentration in formation water rises.CO_(2)injection is beneficial for the evaporation of formation water.The NaCl concentration in formation water has little effect on water evaporation and dissolved-gas escape.When the injection-gas mole fraction of CO_(2)is 0.5,CO_(2)injection can reverse the phase behavior of the petroleum mixture and the oil-gas system is converted to a pure gas-condensate system.For CO_(2)injection,water vapor has little effect on the miscibility of multiple contacts,but can reduce the miscibility of the first contact.
基金financially supported by the National Natural Science Foundation of China (Grant Nos.52201324,52078128,and 52278355)the Natural Science Foundation of the Jiangsu Higher Education Institution of China (Grant No.22KJB560015)。
文摘This paper investigates the interface mechanical behavior of flexible piles with L_p/D>10 under lateral load and an overturning moment in monotonic loading conditions.To modify the beam-on-Winkler-foundation model of piles in offshore wind farms,the energy-based variational method is used.The soil is treated as a multi-layered elastic continuum with the assumption of three-dimensional displacements,the pile modeled as an Euler-Bernoulli beam.A series of cases using MATLAB programming was conducted to investigate the simplified equations of initial stiffness.The results indicated that the interaction between soil layers and the applied force position should be taken into account in calculating the horizontal soil resistance.Additionally,the distributed moment had a limiting effect on the lateral capacity of a flexible pile.Moreover,to account for the more realistic conditions of OWT systems,field data from the Donghai Bridge offshore wind farm were used.
基金the National Key R&D Program of China-National Magnetic Confinement Fusion Science Program(No.2017YFE0300305).
文摘China Fusion Engineering Test Reactor(CFETR)is China's self-designed and ongoing next-generation fusion reactor project.Tritium confinement systems in CFETR guarantee that the radiation level remains below the safety limit during tritium handling and operation in the fuel cycle system.Our tritium technology team is responsible for studying tritium transport behavior in the CFETR tritium safety confinement systems of the National Key R&D Program of China launched in 2017,and we are conducting CFETR tritium plant safety analysis by using CFD software.In this paper,the tritium migration and removal behavior were studied under a postulated accident condition for the Tokamak Exhaust Processing system of CFETR.The quantitative results of the transport behavior of tritium in the process room and glove box during the whole accident sequence(e.g.,tritium release,alarm,isolation,and tritium removal)have been presented.The results support the detailed design and engineering demonstration-related research of CFETR tritium plant.
基金Supported by Shanghai Key Lab of Human Performance(Shanghai University of sport),No.11DZ2261100.
文摘BACKGROUND Depression is a common mental disorder among college students.The main symptoms include being persistent low mood,sad emotional experiences,lack of pleasure,listlessness,and impaired cognitive function accompanied by tendencies of self-harm and suicide.AIM To clarify the pathways and effects of the behavioral activation system between physical activity and depressive symptoms in college students with depressive symptoms.METHODS This cross-sectional research screened 3047 college students.Of these,472 had depressive symptoms,with a depression detection rate of 15.49%.Furthermore,442 college students with depressive symptoms were analyzed.A one-way analysis of variance and Pearson’s correlation,linear regression,and structural equation modeling analyses were used to explore the correlations and pathways of the interactions between the variables.RESULTS Depressive symptoms were significantly negatively correlated with physical activity(r=-0.175,P<0.001),the behavioral activation system(r=-0.197,P<0.001),and drive(r=-0.113,P=0.017).Furthermore,it was negatively correlated with fun-seeking(FS)(r=-0.055,P=0.251);however,it was not significant.Physical activity was significantly positively correlated with reward responsiveness(RR)(r=0.141,P=0.003)and drive(r=0.124,P=0.009)and not significantly positively correlated with FS(r=0.090,P=0.058).The mediating effect of RR between physical activity and depressive symptoms was significant[B=-0.025,95%confidence interval(95%CI):-0.051 to-0.008,P=0.001].The direct and total effects of physical activity on depressive symptoms and were significant(B=-0.150,95%CI:-0.233 to-0.073,P<0.001;B=-0.175,95%CI:-0.260 to-0.099,P<0.001),respectively.CONCLUSION As physical activity levels increased,depression scores among college students decreased.The mediating effect of RR between physical activity and depressive symptoms was significant.Therefore,colleges and universities should encourage college students with depression to increase their physical activity and improve their behavioral activation system.Particular attention should be paid to RR,which may reduce the prevalence of depressive symptoms.
文摘The Trait Activation Theory(TAT)is widely regarded as the most influential personality theory approach in psychology.The purpose of this study is to analyze the TAT’s role in the contemporary workplace.Which personality traits are more likely to predict work success?Which characteristics should businesses prioritize throughout the recruiting and selection processes?According to the Trait Activation Theory,what is the significance of motivation in the workplace and how can employers find employees who can be more productive,efficient,and involved in the organization’s goals?A systematic review of past recent research was used to answer the questions raised above.Following the gathering and examination of multiple recent publications on the issue,it was determined that the use of this model had a favorable impact on individual and group performance,working relationships,manager job performance,and workplace creativity.