With the rapid development of science and technology and the increasing popularity of the Internet,the number of network users is gradually expanding,and the behavior of network users is becoming more and more complex...With the rapid development of science and technology and the increasing popularity of the Internet,the number of network users is gradually expanding,and the behavior of network users is becoming more and more complex.Users’actual demand for resources on the network application platform is closely related to their historical behavior records.Therefore,it is very important to analyze the user behavior path conversion rate.Therefore,this paper analyses and studies user behavior path based on sales data.Through analyzing the user quality of the website as well as the user’s repurchase rate,repurchase rate and retention rate in the website,we can get some user habits and use the data to guide the website optimization.展开更多
Learning and self-adaptation ability is highly required to be integrated in path planning algorithm for underwater robot during navigation through an unspecified underwater environment. High frequency oscillations dur...Learning and self-adaptation ability is highly required to be integrated in path planning algorithm for underwater robot during navigation through an unspecified underwater environment. High frequency oscillations during underwater motion are responsible for nonlinearities in dynamic behavior of underwater robot as well as uncertainties in hydrodynamic coefficients. Reactive behaviors of underwater robot are designed considering the position and orientation of both target and nearest obstacle from robot s current position. Human like reasoning power and approximation based learning skill of neural based adaptive fuzzy inference system(ANFIS)has been found to be effective for underwater multivariable motion control. More than one ANFIS models are used here for achieving goal and obstacle avoidance while avoiding local minima situation in both horizontal and vertical plane of three dimensional workspace.An error gradient approach based on input-output training patterns for learning purpose has been promoted to spawn trajectory of underwater robot optimizing path length as well as time taken. The simulation and experimental results endorse sturdiness and viability of the proposed method in comparison with other navigational methodologies to negotiate with hectic conditions during motion of underwater mobile robot.展开更多
基金funded by the Open Foundation for the University Innovation Platform in the Hunan Province,grant number 18K103Open project,Grant Number 20181901CRP03,20181901CRP04,20181901CRP05+1 种基金Hunan Provincial Education Science 13th Five-Year Plan(Grant No.XJK016BXX001),Social Science Foundation of Hunan Province(Grant No.17YBA049)supported by the project 18K103。
文摘With the rapid development of science and technology and the increasing popularity of the Internet,the number of network users is gradually expanding,and the behavior of network users is becoming more and more complex.Users’actual demand for resources on the network application platform is closely related to their historical behavior records.Therefore,it is very important to analyze the user behavior path conversion rate.Therefore,this paper analyses and studies user behavior path based on sales data.Through analyzing the user quality of the website as well as the user’s repurchase rate,repurchase rate and retention rate in the website,we can get some user habits and use the data to guide the website optimization.
文摘Learning and self-adaptation ability is highly required to be integrated in path planning algorithm for underwater robot during navigation through an unspecified underwater environment. High frequency oscillations during underwater motion are responsible for nonlinearities in dynamic behavior of underwater robot as well as uncertainties in hydrodynamic coefficients. Reactive behaviors of underwater robot are designed considering the position and orientation of both target and nearest obstacle from robot s current position. Human like reasoning power and approximation based learning skill of neural based adaptive fuzzy inference system(ANFIS)has been found to be effective for underwater multivariable motion control. More than one ANFIS models are used here for achieving goal and obstacle avoidance while avoiding local minima situation in both horizontal and vertical plane of three dimensional workspace.An error gradient approach based on input-output training patterns for learning purpose has been promoted to spawn trajectory of underwater robot optimizing path length as well as time taken. The simulation and experimental results endorse sturdiness and viability of the proposed method in comparison with other navigational methodologies to negotiate with hectic conditions during motion of underwater mobile robot.