Dissolved organic matter(DOM) is ubiquitous in the environment and has high reactivity.Once engineered nanoparticles(ENPs) are released into natural systems, interactions of DOM with ENPs may significantly affect ...Dissolved organic matter(DOM) is ubiquitous in the environment and has high reactivity.Once engineered nanoparticles(ENPs) are released into natural systems, interactions of DOM with ENPs may significantly affect the fate and transport of ENPs, as well as the bioavailability and toxicity of ENPs to organisms. However, because of the complexity of DOM and the shortage of useful characterization methods, large knowledge gaps exist in our understanding of the interactions between DOM and ENPs. In this article, we systematically reviewed the interactions between DOM and ENPs, discussed the effects of DOM on the environmental behavior of ENPs, and described the changes in bioavailability and toxicity of ENPs caused by DOM. Critical evaluations of published references suggest further need for assessing and predicting the influences of DOM on the transport,transformation, bioavailability, and toxicity of ENPs in the environment.展开更多
We study a model for the long-term behavior of a single-species population with some degree of pollution tolerance in a polluted environment. The model consists of three ordinary differential equations: one for the p...We study a model for the long-term behavior of a single-species population with some degree of pollution tolerance in a polluted environment. The model consists of three ordinary differential equations: one for the population density, one for the amount of toxicant inside the living organisms, and one for the amount of toxicant in the environment. We derive sufficient conditions for the persistence and the extinction of the population depending on the exogenous input rate of the toxicant into the environment and the level of pollution tolerance of the organisms. Numerical simulations are carried out to illustrate our main results.展开更多
基金supported by the National Key Research and Development Program of China (2016YFA0203102)the National Natural Science Foundation of China (Nos. 21227012, 21337004, 21507147)
文摘Dissolved organic matter(DOM) is ubiquitous in the environment and has high reactivity.Once engineered nanoparticles(ENPs) are released into natural systems, interactions of DOM with ENPs may significantly affect the fate and transport of ENPs, as well as the bioavailability and toxicity of ENPs to organisms. However, because of the complexity of DOM and the shortage of useful characterization methods, large knowledge gaps exist in our understanding of the interactions between DOM and ENPs. In this article, we systematically reviewed the interactions between DOM and ENPs, discussed the effects of DOM on the environmental behavior of ENPs, and described the changes in bioavailability and toxicity of ENPs caused by DOM. Critical evaluations of published references suggest further need for assessing and predicting the influences of DOM on the transport,transformation, bioavailability, and toxicity of ENPs in the environment.
基金Supported by National Natural Science Foundation of China(No.11201075)Natural Science Foundation of Fujian Province(No.2016J01015)Scholarship under Education Department of Fujian Province
文摘We study a model for the long-term behavior of a single-species population with some degree of pollution tolerance in a polluted environment. The model consists of three ordinary differential equations: one for the population density, one for the amount of toxicant inside the living organisms, and one for the amount of toxicant in the environment. We derive sufficient conditions for the persistence and the extinction of the population depending on the exogenous input rate of the toxicant into the environment and the level of pollution tolerance of the organisms. Numerical simulations are carried out to illustrate our main results.